Matter and Radiation at Extremes, Volume. 6, Issue 6, 068402(2021)
In situ high-pressure nuclear magnetic resonance crystallography in one and two dimensions
[1] M.Levitt. Spin Dynamics: Basics of Nuclear Magnetic Resonance, 60-61(2009).
[2] D. M.Grant, K. H.Grant, K. H.Robin, H.Grant K., D. M.Robin. Encyclopedia of Magnetic Resonance(2007).
[3] N.Dubrovinskaia, L.Dubrovinsky. Crystallography taken to the extreme. Phys. Scr., 93, 062501(2018).
[4] P. C.Driscoll, M. W.MacArthur, J. M.Thornton. NMR and crystallography—Complementary approaches to structure determination. Trends Biotechnol., 12, 149-153(1994).
[5] D. L.Bryce. NMR crystallography: Structure and properties of materials from solid-state nuclear magnetic resonance observables. IUCrJ, 4, 350-359(2017).
[6] C.Martineau. NMR crystallography: Applications to inorganic materials. Solid State Nucl. Magn. Reson., 63–64, 1-12(2014).
[7] B.Chen, J.Chen, K.Li, J.-F.Lin, H.-K.Mao, W.Yang, H.Zheng. Recent advances in high-pressure science and technology. Matter Radiat. Extremes, 1, 59-75(2016).
[8] T.Meier, G.Webb. At its extremes: NMR at giga-pascal pressures. Annual Reports on NMR Spectroscopy, 1-74(2018).
[14] J. T.Gerig, W. E.Palke, S. A.Smith. The Hamiltonians of NMR. Part I. Concepts Magn. Reson., 4, 107-144(1992).
[15] G. E.Pake. Nuclear resonance absorption in hydrated crystals: Fine structure of the proton line. J. Chem. Phys., 16, 327-336(1948).
[16] J. W.Hennel, J.Klinowski, J.Klinowski. Magic-angle spinning: A historical perspective. New Techniques in Solid-State NMR, 1-14(2005).
[17] J.Haase, T.Herzig, T.Meier. Moissanite anvil cell design for giga-pascal nuclear magnetic resonance. Rev. Sci. Instrum., 85, 043903(2014).
[19] N.Dubrovinskaia, L.Dubrovinsky, J.Jacobs, S.Khandarkhaeva, A.Krupp, D.Laniel, T.Meier, M.Pena-Alvarez, F.Trybel. Nuclear spin coupling crossover in dense molecular hydrogen. Nat. Commun., 11, 6334(2020).
[20] W. I.Goldburg, M.Lee. Nuclear-magnetic-resonance line narrowing by a rotating rf field. Phys. Rev., 140, A1261-A1271(1965).
[21] J.Haase, T.Meier, S.Reichardt. High-sensitivity NMR beyond 200 000 atmospheres of pressure. J. Magn. Reson., 257, 39-44(2015).
[23] Y.Akahama, H.Kawamura. High-pressure Raman spectroscopy of diamond anvils to 250 GPa: Method for pressure determination in the multimegabar pressure range. J. Appl. Phys., 96, 3748(2004).
[24] Y.Akahama, H.Kawamura. Pressure calibration of diamond anvil Raman gauge to 310GPa. J. Appl. Phys., 100, 043516(2006).
[25] G.Bodenhausen, R. R.Ernst, A. G.Redfield, A.Wokaun. Principles of nuclear magnetic resonance in one and two dimensions. Phys. Today, 42, 75-76(1989).
[26] P.Dalladay-Simpson, E.Gregoryanz, R. T.Howie, C.Ji, B.Li, H.-K.Mao. Everything you always wanted to know about metallic hydrogen but were afraid to ask. Matter Radiat. Extremes, 5, 038101(2020).
[28] H. Y.Geng. Public debate on metallic hydrogen to boost high pressure research. Matter Radiat. Extremes, 2, 275-277(2017).
[30] X.Feng, J.Hao, W.Lei, Y.Li, D.Liu, H.Liu, Y.Ma, S. A. T.Redfern. Route to high-energy density polymeric nitrogen
[31] M.Bykov, E.Bykova, N.Dubrovinskaia, L.Dubrovinsky, T.Fedotenko, E.Koemets, D.Laniel, B.Winkler. Synthesis of magnesium-nitrogen salts of polynitrogen anions. Nat. Commun., 10, 4515(2019).
[32] D.Laniel, P.Loubeyre, G.Weck. Direct reaction of nitrogen and lithium up to 75 GPa: Synthesis of the Li3N, LiN, LiN2, and LiN5 compounds. Inorg. Chem., 57, 10685-10693(2018).
[33] G.Gaiffe, G.Garbarino, D.Laniel, P.Loubeyre, G.Weck. High-pressure synthesized lithium pentazolate compound metastable under ambient conditions. J. Phys. Chem. Lett., 9, 1600-1604(2018).
[34] L. A.O’Dell, C. I.Ratcliffe. Ultra-wideline 14N NMR spectroscopy as a probe of molecular dynamics. Chem. Commun., 46, 6774-6776(2010).
[35] R. W.Schurko. Ultra-wideline solid-state NMR spectroscopy. Acc. Chem. Res., 46, 1985-1995(2013).
[36] L.Stefaniak, G.Webb, G. A.Webb, M.Witanowski. Nitrogen NMR spectroscopy. Annual Reports on NMR Spectroscopy, 1-82(1993).
[37] G. S.Harbison, R. S.Macomber. A complete introduction to modern NMR spectroscopy. Phys. Today, 52, 68(1999).
[38] M.Bykov, E.Bykova, N.Dubrovinskaia, L.Dubrovinsky, T.Kawazoe, A.Simonov, D.Simonova. Structural study of
[39] A. M.dos Santos, T.Hattori, H.Kagi, K.Komatsu, J. J.Molaison, T.Nagai, A.Sano-Furukawa, C. A.Tulk. Direct observation of symmetrization of hydrogen bond in
[40] L. S.Chamyal, P. K.Jha, D. M.Maurya, A.Padmalal, S. B.Pillai. First principles study of hydrogen bond symmetrization in
[41] P.Cortona. Hydrogen bond symmetrization and elastic constants under pressure of
[42] N.Hirao, T.Kikegawa, T.Kondo, Y.Ohishi, E.Ohtani, T.Sakai, A.Sano, N.Sata. Aluminous hydrous mineral
[43] Y.Duan, X.Guo, X.Li, Z.Mao, H.Ni, V. B.Prakapenka, N.Sun, S.Wang. Phase stability and thermal equation of state of
[44] H.Gou, C.Lv, N.Salke, X.Su, Q.Sun, H.Tang, L.Xu, X.Yu, C.Zhao, Y.Zhuang et al. The effect of iron on the sound velocitoes of
[45] H.-k.Mao, W. L.Mao. Key problems of the four-dimensional Earth system. Matter Radiat. Extremes, 5, 038102(2020).
[46] C. P.Grey, A. J.Pell, G.Pintacuda. Paramagnetic NMR in solution and the solid state. Prog. Nucl. Magn. Reson. Spectrosc., 111, 1-271(2019).
[47] H.Yuan, L.Zhang. In situ determination of crystal structure and chemistry of minerals at Earth’s deep lower mantle conditions. Matter Radiat. Extremes, 2, 117-128(2017).
[48] X.-J.Chen. Exploring high-temperature superconductivity in hard matter close to structural instability. Matter Radiat. Extremes, 5, 068102(2020).
[49] N. W.Ashcroft. Hydrogen dominant metallic alloys: High temperature superconductors?. Phys. Rev. Lett., 92, 187002(2004).
[50] A. P.Drozdov, M. I.Eremets, V.Ksenofontov, S. I.Shylin, I. A.Troyan. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 525, 73-76(2015).
[51] H.Liu, J.Lv, Y.Ma, Y.Sun. Theory-orientated discovery of high-temperature superconductors in superhydrides stabilized under high pressure. Matter Radiat. Extremes, 5, 068101(2020).
[52] F. F.Balakirev, L.Balicas, S. P.Besedin, A. P.Drozdov, M. I.Eremets, D. E.Graf, E.Greenberg, D. A.Knyazev, P. P.Kong, M. A.Kuzovnikov, V. S.Minkov, S.Mozaffari, V. B.Prakapenka, M.Tkacz. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 569, 528-531(2019).
[54] N.Dasenbrock-Gammon, M.Debessai, R. P.Dias, K. V.Lawler, R.McBride, A.Salamat, E.Snider, K.Vencatasamy, H.Vindana. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature, 586, 373-377(2020).
[55] X.-J.Chen, A.Gavriliuk, E.Greenberg, C.Ji, B.Li, H.-k.Mao, V.Prakapenka, V.Struzhkin, I.Troyan. Superconductivity in La and Y hydrides: Remaining questions to experiment and theory. Matter Radiat. Extremes, 5, 028201(2020).
[56] S. P.Besedin, A. P.Drozdov, P. P.Kong, M. A.Kuzovnikov, V. S.Minkov, S.Mozaffari et al. Superconductivity up to 243 K in yttrium hydrides under high pressure(2019).
[57] M.Bykov, G.Criniti, N.Dubrovinskaia, L.Dubrovinsky, T.Fedotenko, K.Glazyrin, M.Hanfland, S.Khandarkhaeva, E.Koemets, D.Laniel, T.Meier, G.Steinle-Neumann, F.Trybel. Proton mobility in metallic copper hydride from high-pressure nuclear magnetic resonance. Phys. Rev. B, 102, 165109(2020).
[58] J.Hao, Y.Li, H.Liu, Y.Ma, J. S.Tse, Y.Wang. Pressure-stabilized superconductive yttrium hydrides. Sci. Rep., 5, 9948(2015).
[59] L. L.Liu, W. C.Lu, H. J.Sun, C. Z.Wang. High-pressure structures of yttrium hydrides. J. Phys.: Condens. Matter, 29, 325401(2017).
[60] B.Chen, H.Gou, K.Li, J.Liu, H.-K.Mao, L.Wang, H.Xiao, W.Yang. 2020—Transformative science in the pressure dimension. Matter Radiat. Extremes, 6, 013001(2021).
[61] C.-S.Yoo. Chemistry under extreme conditions: Pressure evolution of chemical bonding and structure in dense solids. Matter Radiat. Extremes, 5, 018202(2020).
[63] R.Ahuja, A.Bj?rling, Y.Ding, E.Greenberg, X.Huang, C.Ji, B.Li, W.Liu, W.Luo, A.Majumdar, H.-K.Mao, W. L.Mao, Y.Meng, V. B.Prakapenka, G.Shen, J.Shu, S.Sinogeikin, J. S.Smith, A.Soldatov, J.Wang, R.Xu, W.Yang. Crystallography of low Z material at ultrahigh pressure: Case study on solid hydrogen. Matter Radiat. Extremes, 5, 038401(2020).
[64] I. A.Kruglov, A. G.Kvashnin, A. R.Oganov, I. A.Savkin, D. V.Semenok. On distribution of superconductivity in metal hydrides. Curr. Opin. Solid State Mater. Sci(2020).
Get Citation
Copy Citation Text
Thomas Meier, Alena Aslandukova, Florian Trybel, Dominique Laniel, Takayuki Ishii, Saiana Khandarkhaeva, Natalia Dubrovinskaia, Leonid Dubrovinsky. In situ high-pressure nuclear magnetic resonance crystallography in one and two dimensions[J]. Matter and Radiation at Extremes, 2021, 6(6): 068402
Category: High Pressure Physics and Materials Science
Received: Aug. 5, 2021
Accepted: Oct. 4, 2021
Published Online: Dec. 7, 2021
The Author Email: Meier Thomas (thomas.meier@hpstar.ac.cn)