Optics and Precision Engineering, Volume. 27, Issue 3, 726(2019)
Multi-features manifold discriminant embedding for hyperspectral image classification
[2] [2] DU P J, XIA J SH, XUE ZH H, et al.. Progress of hyperspectral remote sensing image classification[J]. Journal of remote sensing, 2016,20(2): 236-256. (in Chinese)
[3] [3] LUO F L, DU B, ZHANG L P, et al.. Feature learning using spatial-spectral hypergraph discriminant analysis for hyperspectral image [J]. IEEE Transactions on Cybernetics, 2018,PP(99): 1-14.
[5] [5] FENG F, LI W, DU Q, et al.. Dimensionality reduction of hyperspectral image with graph-based discriminant analysis considering spectral similarity[J]. Remote Sensing, 2017,9(4): 323.
[6] [6] FANG L, WANG C, LI S, et al.. Hyperspectral image classification via multiple-feature-based adaptive sparse representation[J]. IEEE Transactions on Instrumentation & Measurement, 2017,66(7): 1646-1657.
[7] [7] XU Y H, ZHANG L P, DU B, et al.. Spectral-spatial unified networks for hyperspectral image classification[J].IEEE Transactions on Geoscience & Remote Sensing, 2018,PP(99): 1-17.
[8] [8] HUANG H, DUAN Y L, SHI G Y, et al.. Fusion of weighted mean reconstruction and SVMCK for hyperspectral image classification[J]. IEEE Access, 2018,6(99): 15224-15235.
[10] [10] JIANG J J, HU R M, WANG Z Y, et al.. CDMMA: Coupled discriminant multi-manifold analysis for matching low-resolution face images[J]. Signal Processing, 2016,124: 162-172.
[11] [11] BONIFAZI G, CAPOBIANCO G, SERRANTI S. Asbestos containing materials detection and classification by the use of hyperspectral imaging[J]. Journal of Hazardous Materials, 2018,344: 981-993.
[12] [12] LUO R B, LIAO W Z, PHILIPS W, et al.. An improved semi-supervised local discriminant analysis for feature extraction of hyperspectral image [J]. IEEE Transactions on Geoscience & Remote Sensing, 2015,51(1): 184-198.
[14] [14] LI W, ZHANG L P, ZHANG L F,et al.. GPU parallel implementation of isometric mapping for hyperspectral classification [J]. IEEE Geoscience & Remote Sensing Letters, 2017,14(9): 1532-1539.
[15] [15] ZHANG L L, ZHAO C H. Sparsity divergence index based on locally linear embedding for hyperspectral anomaly detection [J]. Journal of Applied Remote Sensing, 2016,10(2): 25-26.
[16] [16] LV M, ZHAO X, LIU L, et al.. Discriminant collaborative neighborhood preserving embedding for hyperspectral imagery[J]. Journal of Applied Remote Sensing, 2017,11(4): 1.
[17] [17] DENG Y J, LI H C, PAN L,et al.. Modified tensor locality preserving projection for dimensionality reduction of hyperspectral images [J]. IEEE Geoscience & Remote Sensing Letters, 2018,15(2): 277-281.
[18] [18] LU Y, LAI Z, FAN Z,et al.. Manifold discriminant regression learning for image classification[J]. Neurocomputing, 2015,166(C): 475-486.
[19] [19] JIA J, RUAN Q, JIN Y. Geometric preserving local fisher discriminant analysis for person re-identification[J]. Neurocomputing, 2016,205(C): 92-105.
[20] [20] LUO F L, HUANG H, DUAN Y L,et al.. Local geometric structure feature for dimensionality reduction of hyperspectral imagery[J]. Remote Sensing, 2017,9(8): 790.
[21] [21] LI W, CHEN C, SU H,et al.. Local binary patterns and extreme learning machine for hyperspectral imagery classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015,53(7): 3681-3693.
[22] [22] MAURO D M,JON A B, BIORN W. Morphological attribute profiles for the analysis of very high resolution images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2010,48(10): 3747-3762.
[23] [23] LI J, HUANG X, GAMBA P, et al.. Multiple feature learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015,53(3): 1592-1606.
[24] [24] SONG C Y, YANG F J, LI P J. Rotation invariant texture measured by local binary pattern for remote sensing image classification[C]. 2010 Second International Workshop on Education Technology and Computer Science, Wuhan, P.R. China, 2010,3(3): 3-6.
[25] [25] XIAO Q, WEN J G. HiWATER: Thermal-Infrared Hyperspectral Radiometer(4th, July, 2012)[Z]. Heihe Plan Science Data Center, 2013. doi: 10.3972/hiwater.006.2013.db. (in Chinese)
Get Citation
Copy Citation Text
HUANG Hong, LI Zheng-ying, SHI Guang-yao, PAN Yin-song. Multi-features manifold discriminant embedding for hyperspectral image classification[J]. Optics and Precision Engineering, 2019, 27(3): 726
Category:
Received: Sep. 14, 2018
Accepted: --
Published Online: May. 30, 2019
The Author Email: