Journal of Terahertz Science and Electronic Information Technology , Volume. 20, Issue 11, 1113(2022)

Research progress of terahertz metamaterials in biological detection applications

DENG Xinxin1,2, LIU Bingwei2,3, LIU Jingbo2, ZHANG Qinnan2, HE Xiaoyong2, LING Dongxiong2, LIU Dongfeng1, and WEI Dongshan22
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(49)

    [1] [1] WALLACE V P,FITZGERALD A J,SHANKAR S,et al. Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo[J]. British Journal of Dermatology, 2015,151(2):424-432.

    [2] [2] KALTENECKER K J. Gouy phase shift of a tightly focused, radially polarized beam[J]. Optica, 2016:35-41.

    [3] [3] ISLAM R,HASANUZZAMAN G,HABIB M S,et al. Low-loss rotated porous core hexagonal single-mode fiber in THz regime[J]. Optical Fiber Technology, 2015(24):38-43.

    [4] [4] CHENG Y, WANG Y, NIU Y, et al. Concealed object enhancement using multi-polarization information for passive millimeter and terahertz wave security screening[J]. Optics Express, 2020,28(5):6350-6366.

    [5] [5] IBRAHIM M E, HEADLAND D, WITHAYACHUMNANKUL W, et al. Nondestructive testing of defects in polymer-matrix composite materials for marine applications using terahertz waves[J]. Journal of Nondestructive Evaluation, 2021,40(2):1-11.

    [6] [6] MITSUHASHI R, MURATE K, NIIJIMA S, et al. Low-cost terahertz tag identifiable through shielding materials using deep learning[J]. Optics Express, 2020,28(3):3517-3527.

    [7] [7] PETROV V,MOLTCHANOV D,KOUCHERYAVY Y,et al. Capacity and outage of terahertz communications with user micro-mobility and beam misalignment[J]. IEEE Transactions on Vehicular Technology, 2020(99):1-1.

    [8] [8] TEKBYK K, EKTI A R, KURT G K, et al. Modeling and analysis of short distance sub-terahertz communication channel via mixture of Gamma distribution[J]. IEEE Transactions on Vehicular Technology, 2021,70(4):2945-2954.

    [9] [9] NAGATSUMA T,DUCOURNAU G,RENAUD C C . Advances in terahertz communications accelerated by photonics[J]. Nature Photonics, 2016,10(6):371-379.

    [10] [10] SEEDS A J,SHAMS H,FICE M J,et al. TeraHertz photonics for wireless communications[J]. Journal of Lightwave Technology, 2015(3):33.

    [11] [11] ROUHI K, RAJABALIPANAH H, ABDOLALI A. Real-time and broadband terahertz wave scattering manipulation via polarization-insensitive conformal graphene-based coding metasurfaces[J]. Annalen Der Physik, 2018,530(4):1700310.

    [12] [12] JIANG Y S,NIE M Y,ZHANG C H,et al. Terahertz scattering property for the coated object of rough surface[J]. Acta Physica Sinica(Chinese Edition), 2015,64(2):024101.

    [14] [14] GIUSEPPE Trainiti, XIA Yiwei, MARCONI Jacopo, et al. Time-periodic stiffness modulation in elastic metamaterials for selective wave filtering:theory and experiment[J]. Physical Review Letters, 2019,122(12):124301.

    [15] [15] ZHENG X,ZHENG L,LI X,et al. Origin of strain-induced resonances in flexible terahertz metamaterials[J]. Chinese Physics B, 2016,25(5):57802.

    [16] [16] LING F, ZHONG Z, ZHANG Y, et al. Broadband negative-refractive index terahertz metamaterial with optically tunable equivalent-energy level[J]. Optics Express, 2018,26(23):30085.

    [17] [17] SHI C,ZANG X F,WANG Y Q,et al. A polarization-independent broadband terahertz absorber[J]. Applied Physics Letters, 2014, 105(3):031104-1-4.

    [18] [18] JAHANI S,JACOB Z. All-dielectric metamaterials[J]. Nature Nanotechnology, 2016,11(1):23-36.

    [20] [20] WANG B X, XIE Q, DONG G, et al. Simplified design for broadband and polarization-insensitive terahertz metamaterial absorber[J]. IEEE Photonics Technology Letters, 2018,30(12):1115-1118.

    [23] [23] SHIRAISHI K,MURAKI K. Metal-film subwavelength-grating polarizer with low insertion losses and high extinction ratios in the terahertz region[J]. Optics Express, 2015,23(13):16676-16681.

    [26] [26] LEE S H,CHOE J H,KIM C,et al. Graphene assisted terahertz metamaterials for sensitive bio-sensing[J]. Sensors and Actuators B Chemical, 2020(310):127841.

    [27] [27] GORYACHUK A. Gastrointestinal cancer diagnostics by terahertz time domain spectroscopy[C]// IEEE International Symposium on Medical Measurements and Applications. Rochester,MN:IEEE, 2017:134-137.

    [28] [28] YANG X, WEI D, YAN S, et al. Rapid and label-free detection and assessment of bacteria by terahertz time-domain spectroscopy[J]. Journal of Biophotonics, 2016:1050-1058.

    [29] [29] XIN Y, MY A, ZHANG Z B, et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells[J]. Biosensors and Bioelectronics, 2019(126):485-492.

    [30] [30] JI Y B. Terahertz spectroscopic imaging and properties of gastrointestinal tract in a rat model[J]. Biomedical Optics Express, 2014,5(12):4162-4170.

    [31] [31] DRISCOLL T,ANDREEV G O,BASOV D N,et al. Tuned permeability in terahertz split-ring resonators for devices and sensors [J]. Applied Physics Letters, 2007,91(6):062511-1-3.

    [32] [32] PADILLA W J, TAYLOR A J, HIGHSTRETE C, et al. Dynamical electric and magnetic metamaterial response at terahertz frequencies[J]. Physical Review Letters, 2006,96(10):107401.

    [33] [33] HU F, GUO E, XU X, et al. Real-timely monitoring the interaction between bovine serum albumin and drugs in aqueous with terahertz metamaterial biosensor[J]. Optics Communications, 2016:62-67.

    [34] [34] XU X, WU Y, HE T, et al Metamaterials-based terahertz sensor for quick diagnosis of early lung cancer[J]. Chinese Optics Letters, 2017,11(5):88-90.

    [35] [35] ZHANG J,MU N,LIU L,et al. Highly sensitive detection of malignant glioma cells using metamaterial-inspired THz biosensor based on electromagnetically induced transparency[J]. Biosensors and Bioelectronics, 2021(185):113241.

    [36] [36] Al-NAIB I. Biomedical sensing with conductively coupled terahertz metamaterial resonators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017(99):1-1.

    [37] [37] TAO H, STRIKWERDA A C, LIU M, et al. Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications[J]. Applied Physics Letters, 2010,97(26):261909.

    [38] [38] XIN Y, MY A, ZHANG Z B, et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells[J]. Biosensors and Bioelectronics, 2019(126):485-492.

    [39] [39] YANG M,LIANG L,ZHANG Z,et al. Electromagnetically induced transparency-like metamaterials for detection of lung cancer cells[J]. Optics Express, 2019,27(14):19520.

    [40] [40] YANG Z,MAEDA R. A world-to-chip socket for microfluidic prototype development[J]. Electrophoresis, 2015,23(20):3474-3478.

    [41] [41] RUI Z, CHEN Q, KAI L, et al. Terahertz microfluidic metamaterial biosensor for sensitive detection of small volume liquid samples[J]. IEEE Transactions on Terahertz Science and Technology, 2019(99):1-1.

    [42] [42] HUANG,HSU,TANG,et al. Application of a terahertz system combined with an X-shaped metamaterial microfluidic cartridge [J]. Micromachines, 2020,11(1):74.

    [43] [43] ASL Y A, YAMINI Y, SEIDI S. Development of a microfluidic-chip system for liquid-phase microextraction based on two immiscible organic solvents for the extraction and preconcentration of some hormonal drugs[J]. Talanta, 2016:592-599.

    [44] [44] YANG Jieping,DENG Hu,XIONG Zhonggang,et al. Terahertz sensor based on a three-dimensional double I-type metamaterial integrated microfluidic channel[J]. Applied Optics, 2021,60(13):3816-3822.

    [45] [45] GENG Z, ZHANG X, FAN Z, et al. A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage[J]. 2017,7(1):16378.

    [47] [47] HE Xiaoyong. Tunable terahertz graphene metamaterials[J]. Carbon, 2015(82):229-237.

    [48] [48] TVHAB C, BST A, BXK A, et al. Controlling the absorption strength in bidirectional terahertz metamaterial absorbers with patterned graphene-ScienceDirect[J]. Computational Materials Science, 2019(166):276-281.

    [49] [49] XIAO S,WANG T,JIANG X,et al. Strong interaction between graphene layer and Fano resonance in terahertz metamaterials[J]. Journal of Physics D Applied Physics, 2017,50(19):195101.

    [50] [50] CHEN Shuyu, WANG Junxing, WEI Dequan, et al. High-sensitivity biosensor based on C-type terahertz metamaterials[J]. Electronic Components and Materials, 2020,39(4):44-50.

    [51] [51] LEE S H,CHOE J H,KIM C,et al. Graphene assisted terahertz metamaterials for sensitive bio-sensing[J]. Sensors and Actuators B Chemical, 2020(310):127841.

    [52] [52] HU Y, LI F, HAN D, et al. Biocompatible graphene for bioanalytical applications[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015.

    [53] [53] LIM,CHAEHYUN,LEE,et al. Broadband characterization of charge carrier transfer of hybrid graphene-deoxyribonucleic acid junctions[J]. Carbon:An International Journal Sponsored by the American Carbon Society, 2018(130):525-531.

    [54] [54] PARK H R,AHN K J,HAN S,et al. Colossal absorption of molecules inside single terahertz nanoantennas[J]. Nano Letters, 2013, 13(4):1782-1786.

    [55] [55] LEE D K, KANG J H, LEE J S, et al. Highly sensitive and selective sugar detection by terahertz nano-antennas[J]. Scientific Reports, 2015(5):15459.

    CLP Journals

    [1]  AOJunhao, RAO Zhiming, LI Chao. Dual-narrowband THz absorber based on vanadium dioxide metamaterial[J]. Journal of Terahertz Science and Electronic Information Technology , 2023, 21(12): 1410

    Tools

    Get Citation

    Copy Citation Text

    DENG Xinxin, LIU Bingwei, LIU Jingbo, ZHANG Qinnan, HE Xiaoyong, LING Dongxiong, LIU Dongfeng, WEI Dongshan2. Research progress of terahertz metamaterials in biological detection applications[J]. Journal of Terahertz Science and Electronic Information Technology , 2022, 20(11): 1113

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Sep. 25, 2021

    Accepted: --

    Published Online: Dec. 26, 2022

    The Author Email:

    DOI:10.11805/tkyda2021343

    Topics