Acta Physica Sinica, Volume. 68, Issue 21, 217501-1(2019)

Research progress of physical model of full-solid-state magnetic refrigeration system

Guo-Qiang Liu1, Ya-Jiao Ke2, Kong-Bin Zhang1, Xiong He1, Feng Luo1, Bin He1, and Zhi-Gang Sun1、*
Author Affiliations
  • 1State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • 2College of Science, Wuhan University of Technology, Wuhan 430070, China
  • show less
    Figures & Tables(10)
    (a) Operation mechanism of Peltier element as thermal diode; (b) the operation mechanism of kH element as thermal diode; (c) the operation mechanism of HTCM element.(a) Peltier元件作为热二极管的工作机制; (b) kH元件作为热二极管的工作机制; (c) HTCM元件工作机制
    (a) Schematic diagram of the full solid state MR model based on a thermal diode[21]; (b) comparison of maximum SCP and exergy efficiency between MR system with thermal diode and parallel-plate AMR at different temperature spans and different frequencies[26].(a) 基于热二极管的全固态MR模型结构示意图[21]; (b) 带有热二极管的MR系统与平行板AMR在不同温跨和不同频率下最大SCP和㶲效率的比较[26]
    (a) Schematic diagram of the full solid state MR system model[28]; (b) temperature distribution over the length of the device[28].(a)全固态MR系统模型结构示意图[28]; (b)器件长度方上的温度分布[28]
    (a) Schematic diagram of a full solid state MR model based on thermal switch[30]; (b) operating principle[23]; (c) variation of COP and SCP with different current[23]; (d) variation of COP and SCP with the length of Peltier element [23].(a)基于热二极管的全固态MR模型示意图[30]; (b)工作原理[23]; (c)不同电流下COP和SCP的变化[23]; (d) Peltier元件不同长度下COP和SCP的变化[23]
    (a) Schematic diagram of the full solid state magnetic refrigeration system[24]; (b) MUR cycle principle[31]; (c) Gd-only[31]; (d) parallel sheets[31]; (e) topology optimization structure[31]; (f) experiment setup[31]; (g) variation of maximum SCP with different Peltier supply voltages[31]; (h) variation of Peltier COP and temperature difference with different rotating speeds[31].(a) 全固态MR系统示意图[24]; (b) MUR循环原理[31]; (c) 仅Gd[31]; (d) 平行板[31]; (e) 拓扑优化结构[31]; (f) 实验设置[31]; (g)最大SCP随Peltier电源电压的变化[31]; (h) Peltier COP和温差随转速的变化[31]
    (a) A full solid state magnetic refrigeration model based on kH element and magnetic Brayton cycle[32]; (b) variation of SCP with operating frequency at different operating temperatures[32]; (c) maximum SCP and COP as a function of temperature[32].(a) 基于kH元件和磁Brayton循环的全固态MR模型[32]; (b) 不同工作温度下SCP随工作频率的变化[32]; (c)最大SCP和COP随温度的变化[32]
    (a) Working mechanism of the cascaded full solid state magnetic refrigeration system[33]; (b) variation of temperature span with operating temperature for different MCM components[33]; (c) dependence of the temperature span on the operating frequency for different thermal conductivities of the MCM[34].(a) 级联全固态MR系统的工作机制[33]; (b) 不同MCM元件数量下温跨随工作温度的变化[33]; (c) 不同热导率的MCM下温跨与工作频率的关系[34]
    (a) Variation of temperature span with rotating speed at different lattice numbers[24]; (b) variation of maximum SCP with rotating speed at different temperature spans and lattice numbers[24]; (c) variation of maximum SCP and COP with different rotating speeds at 32 lattices[24].(a)不同网格数下温跨与转速的关系[24]; (b)不同温跨网格数下最大SCP与转速的关系[24]; (c) 32网格下最大SCP和COP与转速的关系[24]
    • Table 1.

      Maximum SCP comparison between MR with copper blocks and MR with Peltier elements under a 3 V supply voltage[31].

      3 V电压下, 带有铜块的MR和带有Peltier元件的MR的最大SCP比较[31]

      View table
      View in Article

      Table 1.

      Maximum SCP comparison between MR with copper blocks and MR with Peltier elements under a 3 V supply voltage[31].

      3 V电压下, 带有铜块的MR和带有Peltier元件的MR的最大SCP比较[31]

      配置温跨/K最大SCP/W·kg–1增加 百分比/%
      铜块Peltier元件
      平行板567.6133.898
      1026.164.9149
      拓扑优 化结构 588.5160.982
      1035.779.8124
    • Table 2. Comparison of main performances between full solid state MR model and traditional AMR model.

      View table
      View in Article

      Table 2. Comparison of main performances between full solid state MR model and traditional AMR model.

      类型磁工质传热介质工作频率/Hz温跨/KSCP/W·kg–1COP参考文献
      全固态MR准2D全固态MRGdPeltier元件0—2255—151 × 104[21]
      全固态MRGdPeltier元件10501.5 × 1042.8[27]
      2D全固态MRGdPeltier元件205.3—6.5[28]
      全固态MRGdPeltier元件20—200604.0[30]
      1D全固态MRGdPeltier元件50.96—9.21[23]
      准2D全固态MRGdPeltier元件1079.8[31]
      1D全固态MRGdkH元件 0—5002.51.5[32]
      1D全固态MRGdkH元件 11.54.0[33]
      准2D全固态MRGdCu块5—50.92.6—105.81.5—4.2[24]
      传统AMR1D AMRGd151.49—5.27[42]
      2D AMRGd35.4[43]
      1D AMRGd0.125612.16[44]
      AMR/旋转床Gd水+乙二醇0~10< 18.9[45]
      2D AMRGd水+乙二醇0.7510.260.593.1[46]
      2D AMRGd1.514.5~2[47]
      AMR/旋转床Gd水+乙二醇0.87.10.54[48]
      1D AMRGd水+乙二醇0.3—10201007.6—11.2[49]
      2D AMR${\rm Gd_5(Si}_x{\rm Ge}_{1-x})_4 $1.25~10—16~5[50]
      AMR/平行板床${\rm MnFeP}_{1-x}{\rm As}_x $水+乙二醇0.832[51]
      1D AMRLaFeSiMnHy水+乙二醇0.1519.812.4[52]
    Tools

    Get Citation

    Copy Citation Text

    Guo-Qiang Liu, Ya-Jiao Ke, Kong-Bin Zhang, Xiong He, Feng Luo, Bin He, Zhi-Gang Sun. Research progress of physical model of full-solid-state magnetic refrigeration system[J]. Acta Physica Sinica, 2019, 68(21): 217501-1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Jul. 25, 2019

    Accepted: --

    Published Online: Sep. 17, 2020

    The Author Email:

    DOI:10.7498/aps.68.20191139

    Topics