Journal of the Chinese Ceramic Society, Volume. 51, Issue 2, 318(2023)
Discovering Novel Phosphors by Single-Particle Diagnosis and High-Throughput Calculations
[1] [1] HIROSAKI N, TAKEDA T, FUNAHASHI S, et al. Discovery of new nitridosilicate phosphors for solid state lighting by the single-particle- diagnosis approach[J]. Chem Mater, 2014, 26(14): 4280-4288.
[2] [2] TAKEDA T, HIROSAKI N, FUNAHASHI S, et al. Narrow-band green-emitting phosphor Ba2LiSi7AlN12:Eu2+ with high thermal stability discovered by a single particle diagnosis approach[J]. Chem Mater, 2015, 27(17): 5892-5898.
[3] [3] TAKEDA T, HIROSAKI N, FUNAHASHI S, et al. New phosphor discovery by the single particle diagnosis approach[J]. Mater Discovery, 2015, 1: 29-37.
[4] [4] ZHANG Y, LI S, TAKEDA T, et al. Realizing red/orange emission of Eu2+/Ce3+ in La26-xSrxSi41Ox+1N80-x (x=12.72-12.90) phosphors for high color rendition white LEDs[J]. J Mater Chem C, 2020, 8(38): 13458-13466.
[5] [5] WANG X J, WANG L, TAKEDA T, et al. Blue-emitting Sr3Si8-x AlxO7+xN8-x:Eu2+ discovered by a single-particle-diagnosis approach: crystal structure, luminescence, scale-up synthesis, and its abnormal thermal quenching behavior[J]. Chem Mater, 2015, 27(22): 7689-7697.
[6] [6] WANG X J, FUNAHASHI S, TAKEDA T, et al. Structure and luminescence of a novel orange yellow-emitting Ca1.62Eu0.38Si5O3N6 phosphor for warm white LEDs, discovered by a single-particle diagnosis approach[J]. J Mater Chem C, 2016, 4(42): 9968-9975.
[7] [7] WANG C Y, TAKEDA T, TEN KATE O M, et al. New deep-blue- emitting Ce-Doped A4-mBnC19+2mX29+m (A = Sr, La; B = Li; C = Si, Al; X = O, N; 0 ≤ m ≤ 1; 0 ≤ n ≤ 1) phosphors for high color-rendering warm white light-emitting diodes[J]. ACS Appl Mater Interfaces, 2019, 11(32): 29047-29055.
[8] [8] FUNAHASHI S, MICHIUE Y, TAKEDA T, et al. Substitutional disorder in Sr2-yEuyB2-2xSi2+3xAl2-xN8+x (x ? 0.12, y ? 0.10)[J]. Acta Crystallogr, 2014, C70(Pt 5): 452-454.
[9] [9] TEN KATE O M, XIE R J, WANG C Y, et al. Eu2+-Doped Sr2B2-2xSi2+3xAl2-xN8+x: a boron-containing orange emitting nitridosilicate with interesting composition-dependent photoluminescence properties[J]. Inorg Chem, 2016, 55(21): 11331-11336.
[10] [10] WANG Z, CHU I H, ZHOU F, et al. Electronic structure descriptor for the discovery of narrow-band red-emitting phosphors[J]. Chem Mater, 2016, 28(11): 4024-4031.
[11] [11] AMACHRAA M, WANG Z, CHEN C, et al. Predicting thermal quenching in inorganic phosphors[J]. Chem Mater, 2020, 32(14): 6256-6265.
[12] [12] LI S, AMACHRAA M, CHEN C, et al. Efficient near-infrared phosphors discovered by parametrizing the Eu(II) 5d-to-4f energy gap[J]. Matter, 2022, 5(6): 1924-1936.
[13] [13] PARK C, LEE J W, KIM M, et al. A data-driven approach to predicting band gap, excitation, and emission energies for Eu2+-activated phosphors[J]. Inorg Chem Front, 2021, 8(21): 4610-4624.
[14] [14] ZHUO Y, TEHRANI A M, OLIYNYK A O, et al. Identifying an efficient, thermally robust inorganic phosphor host via machine learning[J]. Nat Commun, 2018, 9: 4377.
[15] [15] ZHUO Y, HARIYANI S, YOU S, et al. Machine learning 5d-level centroid shift of Ce3+ inorganic phosphors[J]. J Appl Phys, 2020, 128(1): 013104.
[16] [16] WANG Z, HA J, KIM Y H, et al. Mining unexplored chemistries for phosphors for high-color-quality white-light-emitting diodes[J]. Joule, 2018(2): 914-926.
[17] [17] GEORGE J, HAUTIER G. Chemist versus machine: traditional knowledge versus machine learning techniques[J]. Trends Chem, 2021, 3(2): 86-95.
[18] [18] LI S, XIA Y, AMACHRAA M, et al. Data-driven discovery of full-visible-spectrum phosphor[J]. Chem Mater, 2019, 31(16): 6286-6294.
Get Citation
Copy Citation Text
LI Shuxing, XIE Rongjun. Discovering Novel Phosphors by Single-Particle Diagnosis and High-Throughput Calculations[J]. Journal of the Chinese Ceramic Society, 2023, 51(2): 318
Special Issue:
Received: May. 24, 2022
Accepted: --
Published Online: Mar. 11, 2023
The Author Email: Shuxing LI (lishuxing@xmu.edu.cn)