Acta Photonica Sinica, Volume. 47, Issue 3, 316003(2018)
Preparation and Electrochromic Properties of TiO2/MoO3 Composite Film
[1] [1] MONK P M S, MORTIMER R J, ROSSEINSKY D R. Electrochromism: fundamentals and applications[M]. WILEY J & SONS, 2008.
[2] [2] ROSSEINSKY D R, MORTIMER R J. Electrochromic systems and the prospects for devices[J]. Advanced Materials, 2001, 13(11): 783-793.
[3] [3] LEE S H, DESHPANDE R, PARILLA P A, et al. Crystalline WO3 nanoparticles for highly improved electrochromic applications[J]. Advanced Materials, 2006, 18(6): 763-766.
[4] [4] ARVIZU M A, GRANQVIST C G, NIKLASSON G A. Rejuvenation of degraded electrochromic MoO3 thin films made by DC magnetron sputtering: Preliminary results[C]Journal of Physics: Conference Series. IOP Publishing, 2016, 764(1): 012009.
[5] [5] SORAR I, PEHLIVAN E, NIKLASSON G A, et al. Electrochromism of DC magnetron sputtered TiO2 thin films: Role of deposition parameters[J]. Solar Energy Materials and Solar Cells, 2013, 115: 172-180.
[6] [6] BENMOUSSA M, OUTZOURHIT A, BENNOUNA A, et al. Li+ ions diffusion into sol-gel V2O5 thin films: electrochromic properties[J]. The European Physical Journal Applied Physics, 2009, 48(1): 10502.
[7] [7] CHU C W, LI S H, CHEN C W, et al. High-performance organic thin-film transistors with metal oxide/metal bilayer electrode[J]. Applied Physics Letters, 2005, 87(19): 193508.
[8] [8] BALENDHRAN S, WALIA S, NILI H, et al. Two‐dimensional molybdenum trioxide and dichalcogenides[J]. Advanced Functional Materials, 2013, 23(32): 3952-3970.
[9] [9] YAO D D, OU J Z, LATHAM K, et al. Electrodeposited α-and β-phase MoO3 films and investigation of their gasochromic properties[J]. Crystal Growth & Design, 2012, 12(4): 1865-1870.
[10] [10] OU J Z, CAMPBELL J L, YAO D, et al. In situ Raman spectroscopy of H2 gas interaction with layered MoO3[J]. The Journal of Physical Chemistry C, 2011, 115(21): 10757-10763.
[11] [11] BHOSLE V, TIWARI A, NARAYAN J. Epitaxial growth and properties of MoOx (2< x< 2.75) films[J]. Journal of Applied Physics, 2005, 97(8): 083539.
[12] [12] PRASAD A K, KUBINSKI D J, GOUMA P I. Comparison of sol–gel and ion beam deposited MoO3 thin film gas sensors for selective ammonia detection[J]. Sensors and Actuators B: Chemical, 2003, 93(1): 25-30.
[13] [13] NAVAS I, VINODKUMAR R, LETHY K J, et al. Growth and characterization of molybdenum oxide nanorods by RF magnetron sputtering and subsequent annealing[J]. Journal of Physics D: Applied Physics, 2009, 42(17): 175305.
[14] [14] SICILIANO T, TEPORE A, FILIPPO E, et al. Characteristics of molybdenum trioxide nanobelts prepared by thermal evaporation technique[J]. Materials Chemistry and Physics, 2009, 114(2): 687-691.
[15] [15] PADMANABHAN K R. Preparation of MoO3 films by anodization[J]. Review of Scientific Instruments, 1974, 45(4): 593-593.
[16] [16] WANG S, ZHANG Y, MA X, et al. Hydrothermal route to single crystalline α-MoO3 nanobelts and hierarchical structures[J]. Solid State Communications, 2005, 136(5): 283-287.
[17] [17] MCEVOY T M, STEVENSON K J, HUPP J T, et al. Electrochemical preparation of molybdenum trioxide thin films: Effect of sintering on electrochromic and electroinsertion properties[J]. Langmuir, 2003, 19(10): 4316-4326.
[18] [18] PLOWMAN B J, BHARGAVA S K, O'MULLANE A P. Electrochemical fabrication of metallic nanostructured electrodes for electroanalytical applications[J]. Analyst, 2011, 136(24): 5107-5119.
[19] [19] WU C G, LU M I, JHONG M F. Enhancing the electrochromic characteristics of conjugated polymer with TiO2 nano-rods[J]. Journal of Polymer Science Part B: Polymer Physics, 2008, 46(12): 1121-1130.
[20] [20] GHICOV A, ALBU S P, MACAK J M, et al. High-contrast electrochromic switching using transparent lift-off layers of self-organized TiO2 nanotubes[J]. Small, 2008, 4(8): 1063-1066.
[21] [21] CHEN J Z, KO W Y, YEN Y C, et al. Hydrothermally processed TiO2 nanowire electrodes with antireflective and electrochromic properties[J]. ACS nano, 2012, 6(8): 6633-6639.
[22] [22] SHIN J Y, JOO J H, SAMUELIS D, et al. Oxygen-deficient TiO2-δ nanoparticles via hydrogen reduction for high rate capability lithium batteries[J]. Chemistry of Materials, 2012, 24(3): 543-551.
[23] [23] SHRESTHA N K, NAH Y C, TSUCHIYA H, et al. Self-organized nano-tubes of TiO2-MoO3 with enhanced electrochromic properties[J]. Chemical Communications, 2009 (15): 2008-2010.
[24] [24] LI N, LI Y, LI W, et al. One-step hydrothermal synthesis of TiO2@MoO3 core-shell nanomaterial: microstructure, growth mechanism, and improved photochromic property[J]. The Journal of Physical Chemistry C, 2016, 120(6): 3341-3349.
[25] [25] DI YAO D, FIELD M R, O'MULLANE A P, et al. Electrochromic properties of TiO2 nanotubes coated with electrodeposited MoO3[J]. Nanoscale, 2013, 5(21): 10353-10359.
[26] [26] KHARADE R R, PATIL S P, MANE R M, et al. Synthesis and electrochromic application of surfactants tailored WO3 nanostructures[J]. Optical Materials, 2011, 34(1): 322-326.
[27] [27] KHARADE R R, MALI S S, PATIL S P, et al. Enhanced electrochromic coloration in Ag nanoparticle decorated WO3 thin films[J]. Electrochimica Acta, 2013, 102: 358-368.
[28] [28] KHARADE R R, MALI S S, MOHITE S S, et al. Hybrid physicochemical synthesis and electrochromic performance of WO3/MoO3 thin films[J]. Electroanalysis, 2014, 26(11): 2388-2397.
[29] [29] BUENO P R, GABRIELLI C, PERROT H. Coloring ionic trapping states in WO3 and Nb2O5 electrochromic materials[J]. Electrochimica Acta, 2008, 53(17): 5533-5539.
Get Citation
Copy Citation Text
KANG Jia-qi, YANG Ji-kai, YANG Fu-yu, CHEN Zhang-xiao-xiong, WANG Guo-zheng, DUAN-MU Qing-duo. Preparation and Electrochromic Properties of TiO2/MoO3 Composite Film[J]. Acta Photonica Sinica, 2018, 47(3): 316003
Received: Oct. 23, 2017
Accepted: --
Published Online: Feb. 1, 2018
The Author Email: Jia-qi KANG (371358284@qq.com)