Acta Photonica Sinica, Volume. 53, Issue 5, 0553101(2024)
Progress in Optical Frequency Combs Based on Non-integrated Microresonators(Invited)
[1] KIPPENBERG T J, HOLZWARTH R, DIDDAMS S A. Microresonator-based optical frequency combs[J]. Science, 332, 555-559(2011).
[2] LONG D A, CICH M J, MATHURIN C et al. Nanosecond time-resolved dual-comb absorption spectroscopy[J]. Nature Photonics, 18, 1-5(2023).
[3] PICQUÉ N, HÄNSCH T W. Frequency comb spectroscopy[J]. Nature Photonics, 13, 146-157(2019).
[4] HALL J L. Nobel lecture: Defining and measuring optical frequencies[J]. Reviews of Modern Physics, 78, 1279(2006).
[5] HÄNSCH T W. Nobel lecture: passion for precision[J]. Reviews of Modern Physics, 78, 1297(2006).
[6] DIDDAMS S A. The evolving optical frequency comb[J]. Journal of the Optical Society of America B, 27, B51-B62(2010).
[7] TZALLAS P, CHARALAMBIDIS D, PAPADOGIANNIS N A et al. Direct observation of attosecond light bunching[J]. Nature, 426, 267-271(2003).
[8] PUPEZA I, ZHANG Chuankun, HÖGNER M et al. Extreme-ultraviolet frequency combs for precision metrology and attosecond science[J]. Nature Photonics, 15, 175-186(2021).
[9] YI Xiang, WANG Cheng, CHEN Xibi et al. A 220-to-320-GHz FMCW radar in 65-nm CMOS using a frequency-comb architecture[J]. IEEE Journal of Solid-State Circuits, 56, 327-339(2020).
[10] GUO Hairun, HERKOMMER C, BILLAT A et al. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides[J]. Nature Photonics, 12, 330-335(2018).
[11] CHANG Lin, LIU Songtao, BOWERS J E. Integrated optical frequency comb technologies[J]. Nature Photonics, 16, 95-108(2022).
[12] MARIN-PALOMO P, KEMAL J N, KARPOV M et al. Microresonator-based solitons for massively parallel coherent optical communications[J]. Nature, 546, 274-279(2017).
[13] DIDDAMS S A, HOLLBERG L, MBELE V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb[J]. Nature, 445, 627-630(2007).
[14] TIMMERS H, KOWLIGY A, LIND A et al. Molecular fingerprinting with bright, broadband infrared frequency combs[J]. Optica, 5, 727-732(2018).
[15] MURAVIEV A V, SMOLSKI V O, LOPARO Z E et al. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs[J]. Nature Photonics, 12, 209-214(2018).
[16] ARMANI D K, KIPPENBERG T J, SPILLANE S M et al. Ultra-high-Q toroid microcavity on a chip[J]. Nature, 421, 925-928(2003).
[17] KIPPENBERG T J, SPILLANE S M, VAHALA K J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity[J]. Physical Review Letters, 93, 083904(2004).
[18] DEL'HAYE P, SCHLIESSER A, ARCIZET O et al. Optical frequency comb generation from a monolithic microresonator[J]. Nature, 450, 1214-1217(2007).
[19] CHEMBO Y K, YU Nan. Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators[J]. Physical Review A, 82, 033801(2010).
[20] COEN S, RANDLE H G, SYLVESTRE T et al. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model[J]. Optics Letters, 38, 37-39(2013).
[21] GRIFFITH A G, LAU R K W, CARDENAS J et al. Silicon-chip mid-infrared frequency comb generation[J]. Nature Communications, 6, 6299(2015).
[22] YAO Baicheng, HUANG Shuwei, LIU Yuan et al. Gate-tunable frequency combs in graphene-nitride microresonators[J]. Nature, 558, 410-414(2018).
[23] WANG Cheng, ZHANG Mian, YU Mengjie et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation[J]. Nature Communications, 10, 978(2019).
[24] JUNG H, STOLL R, GUO Xiang et al. Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator[J]. Optica, 1, 396-399(2014).
[25] GRUDININ I S, YU Nan, MALEKI L. Generation of optical frequency combs with a CaF2 resonator[J]. Optics Letters, 34, 878-880(2009).
[26] LIANG W, SAVCHENKOV A A, MATSKO A B et al. Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator[J]. Optics Letters, 36, 2290-2292(2011).
[27] ZHANG Mian, BUSCAINO B, WANG Cheng et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 568, 373-377(2019).
[28] XUE Xiaoxiao, XUAN Yi, WANG Cong et al. Thermal tuning of Kerr frequency combs in silicon nitride microring resonators[J]. Optics Express, 24, 687-698(2016).
[29] ZHU Song, SHI Lei, REN Linhao et al. Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators[J]. Nanophotonics, 8, 2321-2329(2019).
[30] WEBB K E, ERKINTALO M, COEN S et al. Experimental observation of coherent cavity soliton frequency combs in silica microspheres[J]. Optics Letters, 41, 4613-4616(2016).
[31] LI C H, BENEDICK A J, FENDEL P et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1[J]. Nature, 452, 610-612(2008).
[32] PAPP S B, DEL'HAYE P, DIDDAMS S A. Mechanical control of a microrod-resonator optical frequency comb[J]. Physical Review X, 3, 031003(2013).
[33] FARNESI D, BARUCCI A, RIGHINI G C et al. Generation of hyper-parametric oscillations in silica microbubbles[J]. Optics Letters, 40, 4508-4511(2015).
[34] JIN Xueying, XU Xin, GAO Haoran et al. Controllable two-dimensional Kerr and Raman-Kerr frequency combs in microbottle resonators with selectable dispersion[J]. Photonics Research, 9, 171-180(2021).
[35] YIN Yiheng, NIU Yanxiong, QIN Haoye et al. Kerr frequency comb generation in microbottle resonator with tunable zero dispersion wavelength[J]. Journal of Lightwave Technology, 37, 5571-5575(2019).
[36] ANDRIANOV A V, ANASHKINA E A. Raman-assisted optical frequency combs generated in a silica microsphere in two whispering gallery mode families[J]. Laser Physics Letters, 18, 025403(2021).
[37] ZHANG Hao, TAN Teng, CHEN Haojing et al. Soliton microcombs multiplexing using intracavity-stimulated brillouin lasers[J]. Physical Review Letters, 130, 153802(2023).
[38] ZHANG Hao, ZHANG Shuangyou, BI T et al. Microresonator soliton frequency combs via cascaded Brillouin scattering[J]. arXiv preprint(2023).
[39] LU Qijing, LIU Sheng, WU Xiang et al. Stimulated Brillouin laser and frequency comb generation in high-Q microbubble resonators[J]. Optics Letters, 41, 1736-1739(2016).
[40] HERR T, HARTINGER K, RIEMENSBERGER J et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators[J]. Nature Photonics, 6, 480-487(2012).
[41] TAYLOR J R[M]. Optical solitons: theory and experiment(1992).
[42] HASEGAWA A[M]. Optical solitons in fibers(2013).
[43] WIMMER M, REGENSBURGER A, MIRI M A et al. Observation of optical solitons in PT-symmetric lattices[J]. Nature Communications, 6, 7782(2015).
[44] HASEGAWA A. Soliton-based optical communications: An overview[J]. IEEE Journal of Selected Topics in Quantum Electronics, 6, 1161-1172(2000).
[45] DAUXOIS T, PEYRARD M[M]. Physics of solitons(2006).
[46] HANSSON T, MODOTTO D, WABNITZ S. On the numerical simulation of Kerr frequency combs using coupled mode equations[J]. Optics Communications, 312, 134-136(2014).
[47] YANG Qifan, YI Xu, YANG K Y et al. Stokes solitons in optical microcavities[J]. Nature Physics, 13, 53-57(2017).
[48] DUDLEY J M, GENTY G, COEN S. Supercontinuum generation in photonic crystal fiber[J]. Reviews of Modern Physics, 78, 1135(2006).
[49] ZHAO Yanjing, CHEN Liao, HU Hao et al. Numerical investigation of parametric frequency dependence in the modeling of octave-spanning Kerr frequency combs[J]. IEEE Photonics Journal, 12, 1-9(2020).
[50] BARASHENKOV I V, SMIRNOV Y S. Existence and stability chart for the ac-driven, damped nonlinear Schrödinger solitons[J]. Physical Review E, 54, 5707(1996).
[51] GUO Hairun, KARPOV M, LUCAS E et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators[J]. Nature Physics, 13, 94-102(2017).
[52] FUJII S, WADA K, SUGANO R et al. Versatile tuning of Kerr soliton microcombs in crystalline microresonators[J]. Communications Physics, 6, 1(2023).
[53] FUJII S, KATO T, SUZUKI R et al. Transition between Kerr comb and stimulated Raman comb in a silica whispering gallery mode microcavity[J]. JOSA B, 35, 100-106(2018).
[54] LIN Guoping, SONG Qinghai. Kerr frequency comb interaction with Raman, Brillouin, and second order nonlinear effects[J]. Laser & Photonics Reviews, 16, 2100184(2022).
[55] YANG Yu, ZHAO Shuai, SHEN Yuan et al. Transition from Kerr comb to Raman soliton comb in micro-rod resonator for broadband comb applications[J]. IEEE Journal of Quantum Electronics, 57, 1-6(2021).
[56] KARPOV M, GUO Hairun, KORDTS A et al. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator[J]. Physical Review Letters, 116, 103902(2016).
[57] YI Xu, YANG Qifan, YANG K Y et al. Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities[J]. Optics Letters, 41, 3419-3422(2016).
[58] PFEIFFER M H P, HERKOMMER C, LIU Junqiu et al. Octave-spanning dissipative Kerr soliton frequency combs in Si 3 N 4 microresonators[J]. Optica, 4, 684-691(2017).
[59] LUCAS E, YU Supeng, BRILES T C et al. Tailoring microcombs with inverse-designed, meta-dispersion microresonators[J]. Nature Photonics, 17, 943-950(2023).
[60] BRASCH V, GEISELMANN M, HERR T et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation[J]. Science, 351, 357-360(2016).
[61] MATSKO A B, LIANG Wei, SAVCHENKOV A A et al. Optical Cherenkov radiation in overmoded microresonators[J]. Optics Letters, 41, 2907-2910(2016).
[62] YI Xu, YANG Qifan, ZHANG Xueyue et al. Single-mode dispersive waves and soliton microcomb dynamics[J]. Nature Communications, 8, 14869(2017).
[63] LIU Yang, XUAN Yi, XUE Xiaoxiao et al. Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation[J]. Optica, 1, 137-144(2014).
[64] SAVCHENKOV A A, MATSKO A B, LIANG W et al. Kerr frequency comb generation in overmoded resonators[J]. Optics Express, 20, 27290-27298(2012).
[65] HERR T, BRASCH V, JOST J D et al. Temporal solitons in optical microresonators[J]. Nature Photonics, 8, 145-152(2014).
[66] FERDOUS F, MIAO HOUXUN, LEAIRD D E et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs[J]. Nature Photonics, 5, 770-776(2011).
[67] KIPPENBERG T J, GAETA A L, LIPSON M et al. Dissipative Kerr solitons in optical microresonators[J]. Science, 361, eaan8083(2018).
[68] XUE Xiaoxiao, XUAN Yi, LIU Yang et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators[J]. Nature Photonics, 9, 594-600(2015).
[69] ZHANG Shuangyou, SILVER J M, DEL BINO L et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser[J]. Optica, 6, 206-212(2019).
[70] TAN Teng, YUAN Zhongye, ZHANG Hao et al. Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator[J]. Nature Communications, 12, 6716(2021).
[71] YI Xu, YANG Qifan, YANG K Y et al. Active capture and stabilization of temporal solitons in microresonators[J]. Optics Letters, 41, 2037-2040(2016).
[72] JOSHI C, JANG J K, LUKE K et al. Thermally controlled comb generation and soliton modelocking in microresonators[J]. Optics Letters, 41, 2565-2568(2016).
[73] SHEN Boqiang, CHANG Lin, LIU Junqiu et al. Integrated turnkey soliton microcombs[J]. Nature, 582, 365-369(2020).
[74] GEORGELIN Y P, AMRAM P. A review of Fabry and Perot discoveries[C], 149, 382-394(1995).
[75] HECHT J. Short history of laser development[J]. Optical Engineering, 49, 091002(2010).
[76] FAVERO I, KARRAI K. Optomechanics of deformable optical cavities[J]. Nature Photonics, 3, 201-205(2009).
[77] LIU Xueming. Interaction and motion of solitons in passively-mode-locked fiber lasers[J]. Physical Review A, 84, 053828(2011).
[78] BASSI A, PRATI F, LUGIATO L A. Optical instabilities in Fabry-Perot resonators[J]. Physical Review A, 103, 053519(2021).
[79] OBRZUD E, LECOMTE S, HERR T. Temporal solitons in microresonators driven by optical pulses[J]. Nature Photonics, 11, 600-607(2017).
[80] COLE D C, GATTI A, PAPP S B et al. Theory of Kerr frequency combs in Fabry-Perot resonators[J]. Physical Review A, 98, 013831(2018).
[81] BUNEL T, ZIANI Z, CONFORTI M et al. Impact of pump pulse duration on modulation instability Kerr frequency combs in fiber Fabry-Pérot resonators[J]. Optics Letters, 48, 5955-5958(2023).
[82] XIAO Zeyu, WU Kan, LI Tieying et al. Deterministic single-soliton generation in a graphene-FP microresonator[J]. Optics Express, 28, 14933-14947(2020).
[83] BREUSING M, KUEHN S, WINZER T et al. Ultrafast nonequilibrium carrier dynamics in a single graphene layer[J]. Physical Review B, 83, 153410(2011).
[84] BALANDIN A A, GHOSH S, BAO Wenzhong et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 8, 902-907(2008).
[85] NIE Mingming, LI Bowen, JIA K et al. Dissipative soliton generation and real-time dynamics in microresonator-filtered fiber lasers[J]. Light: Science & Applications, 11, 296(2022).
[86] LI Wenle, LI Xiaoliang, GENG Gaoli et al. Generation of separation-locked bound solitons in a passively mode-locked all-fiber laser with a Fabry-Perot microcavity[J]. Optics & Laser Technology, 150, 107936(2022).
[87] YU Supeng, JUNG H, BRILES T C et al. Photonic-crystal-reflector nanoresonators for Kerr-frequency combs[J]. ACS Photonics, 6, 2083-2089(2019).
[88] VICENTINI E, GAMBETTA A, COLUCCELLI N et al. Direct-frequency-comb spectroscopy by a scanning Fabry-Pérot microcavity resonator[J]. Physical Review A, 102, 033510(2020).
[89] SUMETSKY M. Whispering-gallery-bottle microcavities: the three-dimensional etalon[J]. Optics Letters, 29, 8-10(2004).
[90] WARD J M, O'SHEA D G, SHORTT B J et al. Heat-and-pull rig for fiber taper fabrication[J]. Review of Scientific Instruments, 77, 083105(2006).
[91] WARD J M, YANG Yong, CHORMAIC SNIC. Glass-on-glass fabrication of bottle-shaped tunable microlasers and their applications[J]. Scientific Reports, 6, 25152(2016).
[92] ZHU Song, WANG Wenyu, JIANG Bo et al. Flexible manipulation of lasing modes in an erbium-doped microcavity via an add-drop configuration[J]. ACS Photonics, 8, 3069-3077(2021).
[93] ZHU Song, SHI Lei, YUAN Shixing et al. All-optical controllable electromagnetically induced transparency in coupled silica microbottle cavities[J]. Nanophotonics, 7, 1669-1677(2018).
[94] ZHU Song, SHI Lei, XIAO Bowen et al. All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity[J]. ACS Photonics, 5, 3794-3800(2018).
[95] ZHU Song, XIAO Bowen, JIANG Bo et al. Tunable Brillouin and Raman microlasers using hybrid microbottle resonators[J]. Nanophotonics, 8, 931-940(2019).
[96] JIANG Bo, ZHU Song, REN Linhao et al. Simultaneous ultraviolet, visible, and near-infrared continuous-wave lasing in a rare-earth-doped microcavity[J]. Advanced Photonics, 4, 046003(2022).
[97] JIANG Bo, ZHU Song, WANG Wenyu et al. Room-temperature continuous-wave upconversion white microlaser using a rare-earth-doped microcavity[J]. ACS Photonics, 9, 2956-2962(2022).
[98] JIANG Bo, HU Yuchan, REN Linhao et al. Four-and five-photon upconversion lasing from rare earth elements under continuous-wave pump and room temperature[J]. Nanophotonics, 11, 4315-4322(2022).
[99] YANG Yong, SAURABH S, WARD J M et al. High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing[J]. Optics Express, 24, 294-299(2016).
[100] CRESPO-BALLESTEROS M, MATSKO A B, SUMETSKY M. Optimized frequency comb spectrum of parametrically modulated bottle microresonators[J]. Communications Physics, 6, 52(2023).
[101] SAVCHENKOV A A, MATSKO A B, LIANGW et al. Kerr combs with selectable central frequency[J]. Nature Photonics, 5, 293-296(2011).
[102] DVOYRIN V, SUMETSKY M. Bottle microresonator broadband and low-repetition-rate frequency comb generator[J]. Optics Letters, 41, 5547-5550(2016).
[103] ORESHNIKOV I, SKRYABIN D V. Multiple nonlinear resonances and frequency combs in bottle microresonators[J]. Optics Express, 25, 10306-10311(2017).
[104] KARTASHOV Y V, GORODETSKY M L, KUDLINSKI A et al. Two-dimensional nonlinear modes and frequency combs in bottle microresonators[J]. Optics Letters, 43, 2680-2683(2018).
[105] SUMETSKY M. Optical bottle microresonators[J]. Progress in Quantum Electronics, 64, 1-30(2019).
[106] IPPEN E P, STOLEN R H. Stimulated Brillouin scattering in optical fibers[J]. Applied Physics Letters, 21, 539-541(1972).
[107] DING Ming, SENTHIL MURUGAN G, BRAMBILLA G et al. Whispering gallery mode selection in optical bottle microresonators[J]. Applied Physics Letters, 100, 083105(2012).
[108] CAMPION A, KAMBHAMPATI P. Surface-enhanced Raman scattering[J]. Chemical Society Reviews, 27, 241-250(1998).
[109] KOLESNIKOVA A Y, SUCHKOV S V, VATNIK I D. Frequency comb generation in SNAP fiber resonator based on axial-azimuthal mode interactions[J]. Optics Express, 30, 10588-10595(2022).
[110] QU Zhier, LIU Xianwen, ZHANG Cheng et al. Fabrication of an ultra-high quality MgF2 micro-resonator for a single soliton comb generation[J]. Optics Express, 31, 3005-3016(2023).
[111] WANG C Y, HERR T, DEL'HAYE P et al. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators[J]. Nature Communications, 4, 1345(2013).
[112] SAVCHENKOV A A, ILCHENKO V S, DI TEODORO F et al. Generation of Kerr combs centered at 4.5 μm in crystalline microresonators pumped with quantum-cascade lasers[J]. Optics Letters, 40, 3468-3471(2015).
[113] SAYSON N L B, BI T, NG V et al. Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators[J]. Nature Photonics, 13, 701-706(2019).
[114] FUJII S, TANAKA S, FUCHIDA M et al. Octave-wide phase-matched four-wave mixing in dispersion-engineered crystalline microresonators[J]. Optics Letters, 44, 3146-3149(2019).
[115] LUCAS E, LIHACHEV G, BOUCHAND R et al. Spatial multiplexing of soliton microcombs[J]. Nature Photonics, 12, 699-705(2018).
[116] WENG Wenle, BOUCHAND R, KIPPENBERG T J. Formation and collision of multistability-enabled composite dissipative Kerr solitons[J]. Physical Review X, 10, 021017(2020).
[117] BRAGINSKY V B, GORODETSKY M L, ILCHENKO V S. Quality-factor and nonlinear properties of optical whispering-gallery modes[J]. Physics Letters A, 137, 393-397(1989).
[118] LIU X G, GENG D Y, ZHANG Z D. Microwave-absorption properties of FeCo microspheres self-assembled by Al2O3-coated FeCo nanocapsules[J]. Applied Physics Letters, 92, 24310(2008).
[119] GORODETSKY M L, SAVCHENKOV A A, ILCHENKO V S. Ultimate Q of optical microsphere resonators[J]. Optics Letters, 21, 453-455(1996).
[120] MAKER A J, ARMANI A M. Fabrication of silica ultra high quality factor microresonators[J]. JoVE (Journal of Visualized Experiments), e4164(2012).
[121] AGHA I H, OKAWACHI Y, FOSTER M A et al. Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres[J]. Physical Review A, 76, 043837(2007).
[122] AGHA I H, OKAWACHI Y, GAETA A L. Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres[J]. Optics Express, 17, 16209-16215(2009).
[123] JIANG Shuisen, GUO Changlei, FU Hongyan et al. Mid-infrared Raman lasers and Kerr-frequency combs from an all-silica narrow-linewidth microresonator/fiber laser system[J]. Optics Express, 28, 38304-38316(2020).
[124] CHEN Zhenmin, TU Xin, DAI Maolin et al. Kerr frequency comb generation in microsphere resonators with normal dispersion[J]. Journal of Lightwave Technology, 40, 1092-1097(2022).
[125] CASTRO-BELTRÁN R, DIEP V M, SOLTANI S et al. Plasmonically enhanced Kerr frequency combs[J]. Acs Photonics, 4, 2828-2834(2017).
[126] SHEN Xiaoqin, BELTRAN R C, DIEP V M et al. Low-threshold parametric oscillation in organically modified microcavities[J]. Science Advances, 4, eaao4507(2018).
[127] ANASHKINA E A, MARISOVA M P, ANDRIANOV A V. Thermo-optical control of Raman solitons in a functionalized silica microsphere[J]. Micromachines, 13, 1616(2022).
[128] PAPP S B, DIDDAMS S A. Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb[J]. Physical Review A, 84, 053833(2011).
[129] DEL'HAYE P, DIDDAMS S A, PAPP S B. Laser-machined ultra-high-Q microrod resonators for nonlinear optics[J]. Applied Physics Letters, 102, 221119(2013).
[130] DEL'HAYE P, BEHA K, PAPP S B et al. Self-injection locking and phase-locked states in microresonator-based optical frequency combs[J]. Physical Review Letters, 112, 043905(2014).
[131] SUZUKI R, KUBOTA A, HORI A et al. Broadband gain induced Raman comb formation in a silica microresonator[J]. Journal of the Optical Society of America B, 35, 933-938(2018).
[132] YAO Lu, LIU Peng, CHEN Haojing et al. Soliton microwave oscillators using oversized billion Q optical microresonators[J]. Optica, 9, 561-564(2022).
[133] NIU Rui, LI Ming, WAN Shuai et al. kHz-precision wavemeter based on reconfigurable microsoliton[J]. Nature Communications, 14, 169(2023).
[134] NIU Rui, WAN Shuai, LI Jin et al. Fast spectroscopy based on a modulated soliton microcomb[J]. IEEE Photonics Journal, 13, 1-4(2021).
[135] ZHANG Qiang, LIU Boyuan, WEN Qin et al. Low-noise amplification of dissipative Kerr soliton microcomb lines via optical injection locking lasers[J]. Chinese Optics Letters, 19, 121401(2021).
[136] KARPOV M, PFEIFFER M H P, GUO Hairun et al. Dynamics of soliton crystals in optical microresonators[J]. Nature Physics, 15, 1071-1077(2019).
[137] COLE D C, LAMB E S, DEL'HAYE P et al. Soliton crystals in Kerr resonators[J]. Nature Photonics, 11, 671-676(2017).
[138] NIU Rui, WAN Shuai, WANG Zhengyu et al. Perfect soliton crystals in the high-Q microrod resonator[J]. IEEE Photonics Technology Letters, 33, 788-791(2021).
[139] BAO Changjing, ZHANG Lin, MATSKO A et al. Nonlinear conversion efficiency in Kerr frequency comb generation[J]. Optics Letters, 39, 6126-6129(2014).
[140] BERNESCHI S, FARNESI D, COSI F et al. High Q silica microbubble resonators fabricated by arc discharge[J]. Optics Letters, 36, 3521-3523(2011).
[141] JIANG Junfeng, LIU Yize, LIU Kun et al. Wall-thickness-controlled microbubble fabrication for WGM-based application[J]. Applied Optics, 59, 5052-5057(2020).
[142] RIESEN N, ZHANG Wenqi, MONRO T M. Dispersion analysis of whispering gallery mode microbubble resonators[J]. Optics Express, 24, 8832-8847(2016).
[143] RIESEN N, ZHANG Wenqi, MONRO T M. Dispersion in silica microbubble resonators[J]. Optics Letters, 41, 1257-1260(2016).
[144] LI Ming, WU Xiang, LIU Liying et al. Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators[J]. Optics Express, 21, 16908-16913(2013).
[145] YANG Yong, JIANG Xuefeng, KASUMIE S et al. Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator[J]. Optics Letters, 41, 5266-5269(2016).
[146] ANASHKINA E A, MARISOVA M P, SOROKIN A A et al. Numerical simulation of mid-infrared optical frequency comb generation in chalcogenide As2S3 microbubble resonators[J]. Photonics, 6, 55(2019).
[147] ROSELLÓ-MECHÓ X, FARNESI D, FRIGENTI G et al. Parametrical optomechanical oscillations in PhoXonic whispering gallery mode resonators[J]. Scientific Reports, 9, 7163(2019).
[148] SHU Fangjie, ZHANG Peiji, QIAN Yanjun et al. A mechanically tuned Kerr comb in a dispersion-engineered silica microbubble resonator[J]. Science China Physics, 63, 254211(2020).
[149] SU J, GOLDBERG A F G, STOLTZ B M. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators[J]. Light: Science & Applications, 5, e16001(2016).
[150] WU Yanran, DUAN Bing, LI Changhong et al. Multimode sensing based on optical microcavities[J]. Frontiers of Optoelectronics, 16, 29(2023).
[151] MICHAUD-BELLEAU V, ROY J, POTVIN S et al. Whispering gallery mode sensing with a dual frequency comb probe[J]. Optics Express, 20, 3066-3075(2012).
[152] TAN Teng, JIANG Xiantao, WANG Cong et al. 2D material optoelectronics for information functional device applications: status and challenges[J]. Advanced Science, 7, 2000058(2020).
[153] CHEN Quanwei, CHEN Longxiang, FU Zixiang et al. Optical frequency comb-based aerostatic micro pressure sensor aided by machine learning[J]. IEEE Sensors Journal, 23, 21078-21083(2023).
[154] YE Jun, SCHNATZ H, HOLLBERG L W. Optical frequency combs: from frequency metrology to optical phase control[J]. IEEE Journal of Selected Topics in Quantum Electronics, 9, 1041-1058(2003).
[155] JANG Y S, LIU Hao, YANG Jinghui et al. Nanometric precision distance metrology via hybrid spectrally resolved and homodyne interferometry in a single soliton frequency microcomb[J]. Physical Review Letters, 126, 023903(2021).
[156] SUN Yang, WU Jiayang, TAN Mengxi et al. Applications of optical microcombs[J]. Advances in Optics and Photonics, 15, 86-175(2023).
[157] WANG Jindong, LU Zhizhou, WANG Weiqiang et al. Long-distance ranging with high precision using a soliton microcomb[J]. Photonics Research, 8, 1964-1972(2020).
[158] TSAREV D V, ARAKELIAN S M, CHUANG Youlin et al. Quantum metrology beyond Heisenberg limit with entangled matter wave solitons[J]. Optics Express, 26, 19583-19595(2018).
[159] IDEGUCHI T, POISSON A, GUELACHVILI G et al. Adaptive real-time dual-comb spectroscopy[J]. Nature Communications, 5, 3375(2014).
[160] CODDINGTON I, NEWBURY N, SWANN W. Dual-comb spectroscopy[J]. Optica, 3, 414-426(2016).
[161] SUH M G, YANG Qifan, YANG K Y et al. Microresonator soliton dual-comb spectroscopy[J]. Science, 354, 600-603(2016).
[162] LIU Junqiu, LUCAS E, RAJA A S et al. Photonic microwave generation in the X-and K-band using integrated soliton microcombs[J]. Nature Photonics, 14, 486-491(2020).
[163] LIANG W, ELIYAHU D, ILCHENKO V S et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator[J]. Nature Communications, 6, 7957(2015).
[164] SALEH K, CHEMBO Y K. On the phase noise performance of microwave and millimeter-wave signals generated with versatile Kerr optical frequency combs[J]. Optics Express, 24, 25043-25056(2016).
[165] YAO Lu, LIU Peng, CHEN Haojing et al. Soliton microwave oscillators using oversized billion Q optical microresonators[J]. Optica, 9, 561-564(2022).
[166] WENG Wenle, LUCAS E, LIHACHEV G et al. Spectral purification of microwave signals with disciplined dissipative Kerr solitons[J]. Physical Review Letters, 122, 013902(2019).
[167] FORTIER T M, KIRCHNER M S, QUINLAN F et al. Generation of ultrastable microwaves via optical frequency division[J]. Nature Photonics, 5, 425-429(2011).
[168] LUCAS E, BROCHARD P, BOUCHAND R et al. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator[J]. Nature Communications, 11, 374(2020).
[169] WENG Wenle, KASZUBOWSKA-ANANDARAJAH A, LIU Junqiu et al. Frequency division using a soliton-injected semiconductor gain-switched frequency comb[J]. Science Advances, 6, eaba2807(2020).
[170] YANG Qifan, SHEN Boqiang, WANG Heming et al. Vernier spectrometer using counterpropagating soliton microcombs[J]. Science, 363, 965-968(2019).
[171] WEN Qin, CUI Wenwen, GENG Yong et al. Precise control of micro-rod resonator free spectral range via iterative laser annealing[J]. Chinese Optics Letters, 19, 071903(2021).
[172] SANO A, KOBAYASHI T, YAMANAKA S et al. 102.3-Tb/s (224×548-Gb/s) C-and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone[C], PDP5C, 3(2012).
[173] FUJII S, TANAKA S, OHTSUKA T et al. Dissipative Kerr soliton microcombs for FEC-free optical communications over 100 channels[J]. Optics Express, 30, 1351-1364(2022).
Get Citation
Copy Citation Text
Lei SHI, Riyao ZHANG, Han ZHOU, Pengfei LIU, Xinliang ZHANG. Progress in Optical Frequency Combs Based on Non-integrated Microresonators(Invited)[J]. Acta Photonica Sinica, 2024, 53(5): 0553101
Category: Special Issue for Ultrafast Optics
Received: Feb. 29, 2024
Accepted: May. 13, 2024
Published Online: Jun. 20, 2024
The Author Email: Lei SHI (lshi@hust.edu.cn)