Acta Photonica Sinica, Volume. 53, Issue 5, 0553101(2024)
Progress in Optical Frequency Combs Based on Non-integrated Microresonators(Invited)
[1] T J KIPPENBERG, R HOLZWARTH, S A DIDDAMS. Microresonator-based optical frequency combs. Science, 332, 555-559(2011).
[2] D A LONG, M J CICH, C MATHURIN et al. Nanosecond time-resolved dual-comb absorption spectroscopy. Nature Photonics, 18, 1-5(2023).
[3] N PICQUÉ, T W HÄNSCH. Frequency comb spectroscopy. Nature Photonics, 13, 146-157(2019).
[4] J L HALL. Nobel lecture: Defining and measuring optical frequencies. Reviews of Modern Physics, 78, 1279(2006).
[5] T W HÄNSCH. Nobel lecture: passion for precision. Reviews of Modern Physics, 78, 1297(2006).
[6] S A DIDDAMS. The evolving optical frequency comb. Journal of the Optical Society of America B, 27, B51-B62(2010).
[7] P TZALLAS, D CHARALAMBIDIS, N A PAPADOGIANNIS et al. Direct observation of attosecond light bunching. Nature, 426, 267-271(2003).
[8] I PUPEZA, Chuankun ZHANG, M HÖGNER et al. Extreme-ultraviolet frequency combs for precision metrology and attosecond science. Nature Photonics, 15, 175-186(2021).
[9] Xiang YI, Cheng WANG, Xibi CHEN et al. A 220-to-320-GHz FMCW radar in 65-nm CMOS using a frequency-comb architecture. IEEE Journal of Solid-State Circuits, 56, 327-339(2020).
[10] Hairun GUO, C HERKOMMER, A BILLAT et al. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nature Photonics, 12, 330-335(2018).
[11] Lin CHANG, Songtao LIU, J E BOWERS. Integrated optical frequency comb technologies. Nature Photonics, 16, 95-108(2022).
[12] P MARIN-PALOMO, J N KEMAL, M KARPOV et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).
[13] S A DIDDAMS, L HOLLBERG, V MBELE. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature, 445, 627-630(2007).
[14] H TIMMERS, A KOWLIGY, A LIND et al. Molecular fingerprinting with bright, broadband infrared frequency combs. Optica, 5, 727-732(2018).
[15] A V MURAVIEV, V O SMOLSKI, Z E LOPARO et al. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nature Photonics, 12, 209-214(2018).
[16] D K ARMANI, T J KIPPENBERG, S M SPILLANE et al. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925-928(2003).
[17] T J KIPPENBERG, S M SPILLANE, K J VAHALA. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Physical Review Letters, 93, 083904(2004).
[18] P DEL'HAYE, A SCHLIESSER, O ARCIZET et al. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).
[19] Y K CHEMBO, Nan YU. Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators. Physical Review A, 82, 033801(2010).
[20] S COEN, H G RANDLE, T SYLVESTRE et al. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. Optics Letters, 38, 37-39(2013).
[21] A G GRIFFITH, R K W LAU, J CARDENAS et al. Silicon-chip mid-infrared frequency comb generation. Nature Communications, 6, 6299(2015).
[22] Baicheng YAO, Shuwei HUANG, Yuan LIU et al. Gate-tunable frequency combs in graphene-nitride microresonators. Nature, 558, 410-414(2018).
[23] Cheng WANG, Mian ZHANG, Mengjie YU et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation. Nature Communications, 10, 978(2019).
[24] H JUNG, R STOLL, Xiang GUO et al. Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator. Optica, 1, 396-399(2014).
[25] I S GRUDININ, Nan YU, L MALEKI. Generation of optical frequency combs with a CaF2 resonator. Optics Letters, 34, 878-880(2009).
[26] W LIANG, A A SAVCHENKOV, A B MATSKO et al. Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator. Optics Letters, 36, 2290-2292(2011).
[27] Mian ZHANG, B BUSCAINO, Cheng WANG et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373-377(2019).
[28] Xiaoxiao XUE, Yi XUAN, Cong WANG et al. Thermal tuning of Kerr frequency combs in silicon nitride microring resonators. Optics Express, 24, 687-698(2016).
[29] Song ZHU, Lei SHI, Linhao REN et al. Controllable Kerr and Raman-Kerr frequency combs in functionalized microsphere resonators. Nanophotonics, 8, 2321-2329(2019).
[30] K E WEBB, M ERKINTALO, S COEN et al. Experimental observation of coherent cavity soliton frequency combs in silica microspheres. Optics Letters, 41, 4613-4616(2016).
[31] C H LI, A J BENEDICK, P FENDEL et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1. Nature, 452, 610-612(2008).
[32] S B PAPP, P DEL'HAYE, S A DIDDAMS. Mechanical control of a microrod-resonator optical frequency comb. Physical Review X, 3, 031003(2013).
[33] D FARNESI, A BARUCCI, G C RIGHINI et al. Generation of hyper-parametric oscillations in silica microbubbles. Optics Letters, 40, 4508-4511(2015).
[34] Xueying JIN, Xin XU, Haoran GAO et al. Controllable two-dimensional Kerr and Raman-Kerr frequency combs in microbottle resonators with selectable dispersion. Photonics Research, 9, 171-180(2021).
[35] Yiheng YIN, Yanxiong NIU, Haoye QIN et al. Kerr frequency comb generation in microbottle resonator with tunable zero dispersion wavelength. Journal of Lightwave Technology, 37, 5571-5575(2019).
[36] A V ANDRIANOV, E A ANASHKINA. Raman-assisted optical frequency combs generated in a silica microsphere in two whispering gallery mode families. Laser Physics Letters, 18, 025403(2021).
[37] Hao ZHANG, Teng TAN, Haojing CHEN et al. Soliton microcombs multiplexing using intracavity-stimulated brillouin lasers. Physical Review Letters, 130, 153802(2023).
[38] Hao ZHANG, Shuangyou ZHANG, T BI et al. Microresonator soliton frequency combs via cascaded Brillouin scattering. arXiv preprint(2023).
[39] Qijing LU, Sheng LIU, Xiang WU et al. Stimulated Brillouin laser and frequency comb generation in high-Q microbubble resonators. Optics Letters, 41, 1736-1739(2016).
[40] T HERR, K HARTINGER, J RIEMENSBERGER et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nature Photonics, 6, 480-487(2012).
[41] J R TAYLOR. Optical solitons: theory and experiment(1992).
[42] A HASEGAWA. Optical solitons in fibers(2013).
[43] M WIMMER, A REGENSBURGER, M A MIRI et al. Observation of optical solitons in PT-symmetric lattices. Nature Communications, 6, 7782(2015).
[44] A HASEGAWA. Soliton-based optical communications: An overview. IEEE Journal of Selected Topics in Quantum Electronics, 6, 1161-1172(2000).
[45] T DAUXOIS, M PEYRARD. Physics of solitons(2006).
[46] T HANSSON, D MODOTTO, S WABNITZ. On the numerical simulation of Kerr frequency combs using coupled mode equations. Optics Communications, 312, 134-136(2014).
[47] Qifan YANG, Xu YI, K Y YANG et al. Stokes solitons in optical microcavities. Nature Physics, 13, 53-57(2017).
[48] J M DUDLEY, G GENTY, S COEN. Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics, 78, 1135(2006).
[49] Yanjing ZHAO, Liao CHEN, Hao HU et al. Numerical investigation of parametric frequency dependence in the modeling of octave-spanning Kerr frequency combs. IEEE Photonics Journal, 12, 1-9(2020).
[50] I V BARASHENKOV, Y S SMIRNOV. Existence and stability chart for the ac-driven, damped nonlinear Schrödinger solitons. Physical Review E, 54, 5707(1996).
[51] Hairun GUO, M KARPOV, E LUCAS et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nature Physics, 13, 94-102(2017).
[52] S FUJII, K WADA, R SUGANO et al. Versatile tuning of Kerr soliton microcombs in crystalline microresonators. Communications Physics, 6, 1(2023).
[53] S FUJII, T KATO, R SUZUKI et al. Transition between Kerr comb and stimulated Raman comb in a silica whispering gallery mode microcavity. JOSA B, 35, 100-106(2018).
[54] Guoping LIN, Qinghai SONG. Kerr frequency comb interaction with Raman, Brillouin, and second order nonlinear effects. Laser & Photonics Reviews, 16, 2100184(2022).
[55] Yu YANG, Shuai ZHAO, Yuan SHEN et al. Transition from Kerr comb to Raman soliton comb in micro-rod resonator for broadband comb applications. IEEE Journal of Quantum Electronics, 57, 1-6(2021).
[56] M KARPOV, Hairun GUO, A KORDTS et al. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator. Physical Review Letters, 116, 103902(2016).
[57] Xu YI, Qifan YANG, K Y YANG et al. Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities. Optics Letters, 41, 3419-3422(2016).
[58] M H P PFEIFFER, C HERKOMMER, Junqiu LIU et al. Octave-spanning dissipative Kerr soliton frequency combs in Si 3 N 4 microresonators. Optica, 4, 684-691(2017).
[59] E LUCAS, Supeng YU, T C BRILES et al. Tailoring microcombs with inverse-designed, meta-dispersion microresonators. Nature Photonics, 17, 943-950(2023).
[60] V BRASCH, M GEISELMANN, T HERR et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, 351, 357-360(2016).
[61] A B MATSKO, Wei LIANG, A A SAVCHENKOV et al. Optical Cherenkov radiation in overmoded microresonators. Optics Letters, 41, 2907-2910(2016).
[62] Xu YI, Qifan YANG, Xueyue ZHANG et al. Single-mode dispersive waves and soliton microcomb dynamics. Nature Communications, 8, 14869(2017).
[63] Yang LIU, Yi XUAN, Xiaoxiao XUE et al. Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation. Optica, 1, 137-144(2014).
[64] A A SAVCHENKOV, A B MATSKO, W LIANG et al. Kerr frequency comb generation in overmoded resonators. Optics Express, 20, 27290-27298(2012).
[65] T HERR, V BRASCH, J D JOST et al. Temporal solitons in optical microresonators. Nature Photonics, 8, 145-152(2014).
[66] F FERDOUS, HOUXUN MIAO, D E LEAIRD et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nature Photonics, 5, 770-776(2011).
[67] T J KIPPENBERG, A L GAETA, M LIPSON et al. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).
[68] Xiaoxiao XUE, Yi XUAN, Yang LIU et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nature Photonics, 9, 594-600(2015).
[69] Shuangyou ZHANG, J M SILVER, L DEL BINO et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica, 6, 206-212(2019).
[70] Teng TAN, Zhongye YUAN, Hao ZHANG et al. Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nature Communications, 12, 6716(2021).
[71] Xu YI, Qifan YANG, K Y YANG et al. Active capture and stabilization of temporal solitons in microresonators. Optics Letters, 41, 2037-2040(2016).
[72] C JOSHI, J K JANG, K LUKE et al. Thermally controlled comb generation and soliton modelocking in microresonators. Optics Letters, 41, 2565-2568(2016).
[73] Boqiang SHEN, Lin CHANG, Junqiu LIU et al. Integrated turnkey soliton microcombs. Nature, 582, 365-369(2020).
[74] Y P GEORGELIN, P AMRAM. A review of Fabry and Perot discoveries, 149, 382-394(1995).
[75] J HECHT. Short history of laser development. Optical Engineering, 49, 091002(2010).
[76] I FAVERO, K KARRAI. Optomechanics of deformable optical cavities. Nature Photonics, 3, 201-205(2009).
[77] Xueming LIU. Interaction and motion of solitons in passively-mode-locked fiber lasers. Physical Review A, 84, 053828(2011).
[78] A BASSI, F PRATI, L A LUGIATO. Optical instabilities in Fabry-Perot resonators. Physical Review A, 103, 053519(2021).
[79] E OBRZUD, S LECOMTE, T HERR. Temporal solitons in microresonators driven by optical pulses. Nature Photonics, 11, 600-607(2017).
[80] D C COLE, A GATTI, S B PAPP et al. Theory of Kerr frequency combs in Fabry-Perot resonators. Physical Review A, 98, 013831(2018).
[81] T BUNEL, Z ZIANI, M CONFORTI et al. Impact of pump pulse duration on modulation instability Kerr frequency combs in fiber Fabry-Pérot resonators. Optics Letters, 48, 5955-5958(2023).
[82] Zeyu XIAO, Kan WU, Tieying LI et al. Deterministic single-soliton generation in a graphene-FP microresonator. Optics Express, 28, 14933-14947(2020).
[83] M BREUSING, S KUEHN, T WINZER et al. Ultrafast nonequilibrium carrier dynamics in a single graphene layer. Physical Review B, 83, 153410(2011).
[84] A A BALANDIN, S GHOSH, Wenzhong BAO et al. Superior thermal conductivity of single-layer graphene. Nano Letters, 8, 902-907(2008).
[85] Mingming NIE, Bowen LI, K JIA et al. Dissipative soliton generation and real-time dynamics in microresonator-filtered fiber lasers. Light: Science & Applications, 11, 296(2022).
[86] Wenle LI, Xiaoliang LI, Gaoli GENG et al. Generation of separation-locked bound solitons in a passively mode-locked all-fiber laser with a Fabry-Perot microcavity. Optics & Laser Technology, 150, 107936(2022).
[87] Supeng YU, H JUNG, T C BRILES et al. Photonic-crystal-reflector nanoresonators for Kerr-frequency combs. ACS Photonics, 6, 2083-2089(2019).
[88] E VICENTINI, A GAMBETTA, N COLUCCELLI et al. Direct-frequency-comb spectroscopy by a scanning Fabry-Pérot microcavity resonator. Physical Review A, 102, 033510(2020).
[89] M SUMETSKY. Whispering-gallery-bottle microcavities: the three-dimensional etalon. Optics Letters, 29, 8-10(2004).
[90] J M WARD, D G O'SHEA, B J SHORTT et al. Heat-and-pull rig for fiber taper fabrication. Review of Scientific Instruments, 77, 083105(2006).
[91] J M WARD, Yong YANG, SNIC CHORMAIC. Glass-on-glass fabrication of bottle-shaped tunable microlasers and their applications. Scientific Reports, 6, 25152(2016).
[92] Song ZHU, Wenyu WANG, Bo JIANG et al. Flexible manipulation of lasing modes in an erbium-doped microcavity via an add-drop configuration. ACS Photonics, 8, 3069-3077(2021).
[93] Song ZHU, Lei SHI, Shixing YUAN et al. All-optical controllable electromagnetically induced transparency in coupled silica microbottle cavities. Nanophotonics, 7, 1669-1677(2018).
[94] Song ZHU, Lei SHI, Bowen XIAO et al. All-optical tunable microlaser based on an ultrahigh-Q erbium-doped hybrid microbottle cavity. ACS Photonics, 5, 3794-3800(2018).
[95] Song ZHU, Bowen XIAO, Bo JIANG et al. Tunable Brillouin and Raman microlasers using hybrid microbottle resonators. Nanophotonics, 8, 931-940(2019).
[96] Bo JIANG, Song ZHU, Linhao REN et al. Simultaneous ultraviolet, visible, and near-infrared continuous-wave lasing in a rare-earth-doped microcavity. Advanced Photonics, 4, 046003(2022).
[97] Bo JIANG, Song ZHU, Wenyu WANG et al. Room-temperature continuous-wave upconversion white microlaser using a rare-earth-doped microcavity. ACS Photonics, 9, 2956-2962(2022).
[98] Bo JIANG, Yuchan HU, Linhao REN et al. Four-and five-photon upconversion lasing from rare earth elements under continuous-wave pump and room temperature. Nanophotonics, 11, 4315-4322(2022).
[99] Yong YANG, S SAURABH, J M WARD et al. High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing. Optics Express, 24, 294-299(2016).
[100] M CRESPO-BALLESTEROS, A B MATSKO, M SUMETSKY. Optimized frequency comb spectrum of parametrically modulated bottle microresonators. Communications Physics, 6, 52(2023).
[101] A A SAVCHENKOV, A B MATSKO, LIANGW et al. Kerr combs with selectable central frequency. Nature Photonics, 5, 293-296(2011).
[102] V DVOYRIN, M SUMETSKY. Bottle microresonator broadband and low-repetition-rate frequency comb generator. Optics Letters, 41, 5547-5550(2016).
[103] I ORESHNIKOV, D V SKRYABIN. Multiple nonlinear resonances and frequency combs in bottle microresonators. Optics Express, 25, 10306-10311(2017).
[104] Y V KARTASHOV, M L GORODETSKY, A KUDLINSKI et al. Two-dimensional nonlinear modes and frequency combs in bottle microresonators. Optics Letters, 43, 2680-2683(2018).
[105] M SUMETSKY. Optical bottle microresonators. Progress in Quantum Electronics, 64, 1-30(2019).
[106] E P IPPEN, R H STOLEN. Stimulated Brillouin scattering in optical fibers. Applied Physics Letters, 21, 539-541(1972).
[107] Ming DING, G SENTHIL MURUGAN, G BRAMBILLA et al. Whispering gallery mode selection in optical bottle microresonators. Applied Physics Letters, 100, 083105(2012).
[108] A CAMPION, P KAMBHAMPATI. Surface-enhanced Raman scattering. Chemical Society Reviews, 27, 241-250(1998).
[109] A Y KOLESNIKOVA, S V SUCHKOV, I D VATNIK. Frequency comb generation in SNAP fiber resonator based on axial-azimuthal mode interactions. Optics Express, 30, 10588-10595(2022).
[110] Zhier QU, Xianwen LIU, Cheng ZHANG et al. Fabrication of an ultra-high quality MgF2 micro-resonator for a single soliton comb generation. Optics Express, 31, 3005-3016(2023).
[111] C Y WANG, T HERR, P DEL'HAYE et al. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. Nature Communications, 4, 1345(2013).
[112] A A SAVCHENKOV, V S ILCHENKO, F DI TEODORO et al. Generation of Kerr combs centered at 4.5 μm in crystalline microresonators pumped with quantum-cascade lasers. Optics Letters, 40, 3468-3471(2015).
[113] N L B SAYSON, T BI, NG V et al. Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators. Nature Photonics, 13, 701-706(2019).
[114] S FUJII, S TANAKA, M FUCHIDA et al. Octave-wide phase-matched four-wave mixing in dispersion-engineered crystalline microresonators. Optics Letters, 44, 3146-3149(2019).
[115] E LUCAS, G LIHACHEV, R BOUCHAND et al. Spatial multiplexing of soliton microcombs. Nature Photonics, 12, 699-705(2018).
[116] Wenle WENG, R BOUCHAND, T J KIPPENBERG. Formation and collision of multistability-enabled composite dissipative Kerr solitons. Physical Review X, 10, 021017(2020).
[117] V B BRAGINSKY, M L GORODETSKY, V S ILCHENKO. Quality-factor and nonlinear properties of optical whispering-gallery modes. Physics Letters A, 137, 393-397(1989).
[118] X G LIU, D Y GENG, Z D ZHANG. Microwave-absorption properties of FeCo microspheres self-assembled by Al2O3-coated FeCo nanocapsules. Applied Physics Letters, 92, 24310(2008).
[119] M L GORODETSKY, A A SAVCHENKOV, V S ILCHENKO. Ultimate Q of optical microsphere resonators. Optics Letters, 21, 453-455(1996).
[120] A J MAKER, A M ARMANI. Fabrication of silica ultra high quality factor microresonators. JoVE (Journal of Visualized Experiments), e4164(2012).
[121] I H AGHA, Y OKAWACHI, M A FOSTER et al. Four-wave-mixing parametric oscillations in dispersion-compensated high-Q silica microspheres. Physical Review A, 76, 043837(2007).
[122] I H AGHA, Y OKAWACHI, A L GAETA. Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres. Optics Express, 17, 16209-16215(2009).
[123] Shuisen JIANG, Changlei GUO, Hongyan FU et al. Mid-infrared Raman lasers and Kerr-frequency combs from an all-silica narrow-linewidth microresonator/fiber laser system. Optics Express, 28, 38304-38316(2020).
[124] Zhenmin CHEN, Xin TU, Maolin DAI et al. Kerr frequency comb generation in microsphere resonators with normal dispersion. Journal of Lightwave Technology, 40, 1092-1097(2022).
[125] R CASTRO-BELTRÁN, V M DIEP, S SOLTANI et al. Plasmonically enhanced Kerr frequency combs. Acs Photonics, 4, 2828-2834(2017).
[126] Xiaoqin SHEN, R C BELTRAN, V M DIEP et al. Low-threshold parametric oscillation in organically modified microcavities. Science Advances, 4, eaao4507(2018).
[127] E A ANASHKINA, M P MARISOVA, A V ANDRIANOV. Thermo-optical control of Raman solitons in a functionalized silica microsphere. Micromachines, 13, 1616(2022).
[128] S B PAPP, S A DIDDAMS. Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb. Physical Review A, 84, 053833(2011).
[129] P DEL'HAYE, S A DIDDAMS, S B PAPP. Laser-machined ultra-high-Q microrod resonators for nonlinear optics. Applied Physics Letters, 102, 221119(2013).
[130] P DEL'HAYE, K BEHA, S B PAPP et al. Self-injection locking and phase-locked states in microresonator-based optical frequency combs. Physical Review Letters, 112, 043905(2014).
[131] R SUZUKI, A KUBOTA, A HORI et al. Broadband gain induced Raman comb formation in a silica microresonator. Journal of the Optical Society of America B, 35, 933-938(2018).
[132] Lu YAO, Peng LIU, Haojing CHEN et al. Soliton microwave oscillators using oversized billion Q optical microresonators. Optica, 9, 561-564(2022).
[133] Rui NIU, Ming LI, Shuai WAN et al. kHz-precision wavemeter based on reconfigurable microsoliton. Nature Communications, 14, 169(2023).
[134] Rui NIU, Shuai WAN, Jin LI et al. Fast spectroscopy based on a modulated soliton microcomb. IEEE Photonics Journal, 13, 1-4(2021).
[135] Qiang ZHANG, Boyuan LIU, Qin WEN et al. Low-noise amplification of dissipative Kerr soliton microcomb lines via optical injection locking lasers. Chinese Optics Letters, 19, 121401(2021).
[136] M KARPOV, M H P PFEIFFER, Hairun GUO et al. Dynamics of soliton crystals in optical microresonators. Nature Physics, 15, 1071-1077(2019).
[137] D C COLE, E S LAMB, P DEL'HAYE et al. Soliton crystals in Kerr resonators. Nature Photonics, 11, 671-676(2017).
[138] Rui NIU, Shuai WAN, Zhengyu WANG et al. Perfect soliton crystals in the high-Q microrod resonator. IEEE Photonics Technology Letters, 33, 788-791(2021).
[139] Changjing BAO, Lin ZHANG, A MATSKO et al. Nonlinear conversion efficiency in Kerr frequency comb generation. Optics Letters, 39, 6126-6129(2014).
[140] S BERNESCHI, D FARNESI, F COSI et al. High Q silica microbubble resonators fabricated by arc discharge. Optics Letters, 36, 3521-3523(2011).
[141] Junfeng JIANG, Yize LIU, Kun LIU et al. Wall-thickness-controlled microbubble fabrication for WGM-based application. Applied Optics, 59, 5052-5057(2020).
[142] N RIESEN, Wenqi ZHANG, T M MONRO. Dispersion analysis of whispering gallery mode microbubble resonators. Optics Express, 24, 8832-8847(2016).
[143] N RIESEN, Wenqi ZHANG, T M MONRO. Dispersion in silica microbubble resonators. Optics Letters, 41, 1257-1260(2016).
[144] Ming LI, Xiang WU, Liying LIU et al. Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators. Optics Express, 21, 16908-16913(2013).
[145] Yong YANG, Xuefeng JIANG, S KASUMIE et al. Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator. Optics Letters, 41, 5266-5269(2016).
[146] E A ANASHKINA, M P MARISOVA, A A SOROKIN et al. Numerical simulation of mid-infrared optical frequency comb generation in chalcogenide As2S3 microbubble resonators. Photonics, 6, 55(2019).
[147] X ROSELLÓ-MECHÓ, D FARNESI, G FRIGENTI et al. Parametrical optomechanical oscillations in PhoXonic whispering gallery mode resonators. Scientific Reports, 9, 7163(2019).
[148] Fangjie SHU, Peiji ZHANG, Yanjun QIAN et al. A mechanically tuned Kerr comb in a dispersion-engineered silica microbubble resonator. Science China Physics, 63, 254211(2020).
[149] J SU, A F G GOLDBERG, B M STOLTZ. Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light: Science & Applications, 5, e16001(2016).
[150] Yanran WU, Bing DUAN, Changhong LI et al. Multimode sensing based on optical microcavities. Frontiers of Optoelectronics, 16, 29(2023).
[151] V MICHAUD-BELLEAU, J ROY, S POTVIN et al. Whispering gallery mode sensing with a dual frequency comb probe. Optics Express, 20, 3066-3075(2012).
[152] Teng TAN, Xiantao JIANG, Cong WANG et al. 2D material optoelectronics for information functional device applications: status and challenges. Advanced Science, 7, 2000058(2020).
[153] Quanwei CHEN, Longxiang CHEN, Zixiang FU et al. Optical frequency comb-based aerostatic micro pressure sensor aided by machine learning. IEEE Sensors Journal, 23, 21078-21083(2023).
[154] Jun YE, H SCHNATZ, L W HOLLBERG. Optical frequency combs: from frequency metrology to optical phase control. IEEE Journal of Selected Topics in Quantum Electronics, 9, 1041-1058(2003).
[155] Y S JANG, Hao LIU, Jinghui YANG et al. Nanometric precision distance metrology via hybrid spectrally resolved and homodyne interferometry in a single soliton frequency microcomb. Physical Review Letters, 126, 023903(2021).
[156] Yang SUN, Jiayang WU, Mengxi TAN et al. Applications of optical microcombs. Advances in Optics and Photonics, 15, 86-175(2023).
[157] Jindong WANG, Zhizhou LU, Weiqiang WANG et al. Long-distance ranging with high precision using a soliton microcomb. Photonics Research, 8, 1964-1972(2020).
[158] D V TSAREV, S M ARAKELIAN, Youlin CHUANG et al. Quantum metrology beyond Heisenberg limit with entangled matter wave solitons. Optics Express, 26, 19583-19595(2018).
[159] T IDEGUCHI, A POISSON, G GUELACHVILI et al. Adaptive real-time dual-comb spectroscopy. Nature Communications, 5, 3375(2014).
[160] I CODDINGTON, N NEWBURY, W SWANN. Dual-comb spectroscopy. Optica, 3, 414-426(2016).
[161] M G SUH, Qifan YANG, K Y YANG et al. Microresonator soliton dual-comb spectroscopy. Science, 354, 600-603(2016).
[162] Junqiu LIU, E LUCAS, A S RAJA et al. Photonic microwave generation in the X-and K-band using integrated soliton microcombs. Nature Photonics, 14, 486-491(2020).
[163] W LIANG, D ELIYAHU, V S ILCHENKO et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nature Communications, 6, 7957(2015).
[164] K SALEH, Y K CHEMBO. On the phase noise performance of microwave and millimeter-wave signals generated with versatile Kerr optical frequency combs. Optics Express, 24, 25043-25056(2016).
[165] Lu YAO, Peng LIU, Haojing CHEN et al. Soliton microwave oscillators using oversized billion Q optical microresonators. Optica, 9, 561-564(2022).
[166] Wenle WENG, E LUCAS, G LIHACHEV et al. Spectral purification of microwave signals with disciplined dissipative Kerr solitons. Physical Review Letters, 122, 013902(2019).
[167] T M FORTIER, M S KIRCHNER, F QUINLAN et al. Generation of ultrastable microwaves via optical frequency division. Nature Photonics, 5, 425-429(2011).
[168] E LUCAS, P BROCHARD, R BOUCHAND et al. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator. Nature Communications, 11, 374(2020).
[169] Wenle WENG, A KASZUBOWSKA-ANANDARAJAH, Junqiu LIU et al. Frequency division using a soliton-injected semiconductor gain-switched frequency comb. Science Advances, 6, eaba2807(2020).
[170] Qifan YANG, Boqiang SHEN, Heming WANG et al. Vernier spectrometer using counterpropagating soliton microcombs. Science, 363, 965-968(2019).
[171] Qin WEN, Wenwen CUI, Yong GENG et al. Precise control of micro-rod resonator free spectral range via iterative laser annealing. Chinese Optics Letters, 19, 071903(2021).
[172] A SANO, T KOBAYASHI, S YAMANAKA et al. 102.3-Tb/s (224×548-Gb/s) C-and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone, PDP5C, 3(2012).
[173] S FUJII, S TANAKA, T OHTSUKA et al. Dissipative Kerr soliton microcombs for FEC-free optical communications over 100 channels. Optics Express, 30, 1351-1364(2022).
Get Citation
Copy Citation Text
Lei SHI, Riyao ZHANG, Han ZHOU, Pengfei LIU, Xinliang ZHANG. Progress in Optical Frequency Combs Based on Non-integrated Microresonators(Invited)[J]. Acta Photonica Sinica, 2024, 53(5): 0553101
Category: Special Issue for Ultrafast Optics
Received: Feb. 29, 2024
Accepted: May. 13, 2024
Published Online: Jun. 20, 2024
The Author Email: SHI Lei (lshi@hust.edu.cn)