Opto-Electronic Engineering, Volume. 47, Issue 3, 190477(2020)
Field distribution characteristics of vortex beams passing through the non-Gaussian random rough surface
[1] [1] Leach J, Yao E, Padgett M J. Observation of the vortex structure of a non-integer vortex beam[J]. New Journal of Physics, 2004, 6: 71.
[2] [2] Ding P F. Stabilization analysis of phase singularity of vortex beams with integral and fractional orders[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2011, 39(5): 118-122.
[3] [3] Ke X Z, Li Y X. Experimental study on fractional Laguerre Gaussian beam with orbital angular momentum[J]. Laser & Optoelectronics Progress, 2015, 52(8): 080501.
[4] [4] Lavery M P J, Speirits F C, Barnett S M, et al. Detection of a spinning object using light's orbital angular momentum[J]. Science, 2013, 341(6145): 537-540.
[5] [5] Fraine A, Uribe-Patarroyo N, Simon D S, et al. Object identification using correlated orbital angular momentum states[C]//Proceedings of CLEO: Science and Innovations 2013, San Jose, 2014: 1-2.
[6] [6] Ke X Z, Zhao J. Analysis on characteristic of Laguerre-Gaussian beams with topological charges of arithmetic progression[J]. Optik, 2019, 183: 302-310.
[7] [7] Hall M, Courteau S, Dutton A A, et al. An investigation of Sloan Digital Sky Survey imaging data and multiband scaling relations of spiral galaxies[J]. Monthly Notices of the Royal Astronomical Society, 2015, 425(4): 2741-2765.
[9] [9] Liu H Q. Optical spanner based on the transfer of spin angular momentum of light in semiconductors[J]. Optics Communications, 2015, 342: 125-128.
[10] [10] Yuan X C, Jia P, Lei T, et al. Optical vortices and optical communication with orbital angular momentum[J]. Journal of Shenzhen University Science and Engineering, 2014, 31(4): 331-346.
[11] [11] Zhao C L, Dong Y, Wang Y M, et al. Experimental generation of a partially coherent Laguerre-Gaussian beam[J]. Applied Physics B, 2012, 109(2): 345-349.
[12] [12] Wang F, Liu X L, Yuan Y S, et al. Experimental generation of partially coherent beams with different complex degrees of coherence[J]. Optics Letters, 2013, 38(11): 1814-1816.
[13] [13] Cai Y J, Chen Y H, Wang F. Generation and propagation of partially coherent beams with nonconventional correlation functions: a review [Invited][J]. Journal of the Optical Society of America A, 2014, 31(9): 2083-2096.
[14] [14] Zhao C L, Cai Y J, Lu X H, et al. Radiation force of coherent and partially coherent flat-topped beams on a Rayleigh particle[J]. Optics Express, 2009, 17(3): 1753-1765.
[15] [15] Reddy S G, Prabhakar S, Kumar A, et al. Higher order optical vortices and formation of speckles[J]. Optics Letters, 2014, 39(15): 4364-4367.
[16] [16] Passos M H M, Lemos M R, Almeida S R, et al. Speckle patterns produced by an optical vortex and its application to surface roughness measurements[J]. Applied Optics, 2017, 56(2): 330-335.
[17] [17] Vinu R V, Singh R K. Determining helicity and topological structure of coherent vortex beam from laser speckle[J]. Applied Physics Letters, 2016, 109(11): 111108.
[18] [18] Salla G R, Perumangattu C, Prabhakar S, et al. Recovering the vorticity of a light beam after scattering[J]. Applied Physics Letters, 2015, 107(2): 021104.
[19] [19] Tian Z S, Wang Q. Numerical simulation on speckle for gauss laser beam[C]//Proceedings of SPIE. Hangzhou, 2004: 4.
[21] [21] Li X Z, Tian X M, Wang H, et al. Study on properties of speckle field formed by Laguerre-Gaussian beam illumination[J]. Acta Optica Sinica, 2015, 35(7): 0726001.
[22] [22] Liu J L, Huang H L, Chen Z Y, et al. Investigation on the speckle produced by vortex beams through a scattering medium[J]. Journal of Optoelectronics·Laser, 2015, 26(8): 1626-1632.
[23] [23] Shi L, Li J, Tao T. Micro-particles' rotation by Laguerre-Gaussian beams produced by computer-generated holograms[J]. Laser & Infrared, 2012, 42(11): 1226-1229.
[24] [24] Li J C, Xiong B H. Theory and Calculation of Information Optics[M]. Beijing: Science Press, 2009.
[25] [25] Chen H, Hu Y Z, Wang H, et al. Computer simulation of rough surfaces[J]. Lubrication Engineering, 2006(10): 52-55, 59.
[26] [26] Bakolas V. Numerical generation of arbitrarily oriented non-Gaussian three-dimensional rough surfaces[J]. Wear, 2003, 254(5-6): 546-554.
[27] [27] Hill I D, Hill R, Holder R L. Algorithm AS 99: fitting Johnson curves by moments[J]. Applied Statistics, 1976, 25(2): 180-189.
Get Citation
Copy Citation Text
Lv Hong, Ren Chengcheng, Liu Xudong, Dang Lei. Field distribution characteristics of vortex beams passing through the non-Gaussian random rough surface[J]. Opto-Electronic Engineering, 2020, 47(3): 190477
Received: Aug. 13, 2019
Accepted: --
Published Online: Apr. 5, 2020
The Author Email: Hong Lv (lh511@sina.com)