Acta Photonica Sinica, Volume. 46, Issue 8, 826001(2017)

Improvement of the Stability of Convolutional Perfect Matched Layer Based on Finite Difference Time-domain Algorithm

XIE Guo-da*... HUANG Zhi-xiang, WANG Li-hua and WU Xian-liang |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(19)

    [1] [1] BERENGER J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1994, 114(2): 185-200.

    [4] [4] GEDNEY S D. An anisotropic PML absorbing media fir the FDTD simulation of fields in lossy and dispersive media[J]. Electromagnetics, 1996, 16(4): 399-415.

    [5] [5] RAMADA O. Digital filtering technique for the FDTD implementation of anisotropic perfectly matched layer[J]. IEEE Microwave and Wireless Components Letters, 2003, 13(8): 499-501.

    [6] [6] SEMICHAEVSKY A, AKYURTLU A. A new uniaxial perfectly matched layer absorbing boundary condition for chiral metamaterials[J]. IEEE Antennas and Wireless Propagation Letters, 2005, 4(1): 51-54.

    [7] [7] RODEN J A, GENDEY S D. Convolutional PML (CPML): an efficient FDTD implementation of CFS-PML for arbitrary media[J]. Microwave and Optical technology letters, 2000, 27(5): 334-339.

    [8] [8] LI Jian-xiong, DAI Jun-feng. Z-transform implementation of the CFS-PML[J]. IEEE Antennas and Wireless Propagation Letters, 2006, 42(17): 953-955.

    [9] [9] GEDNEY S D, ZHAO Bo. An auxiliary differential equation formulation for the complex-frequency shifted PML[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(3): 838-847.

    [10] [10] GE De-biao, YAN Yu-bo. Finite-difference time-domain method for electromagnetic waves[M]. 3rd ed., Xi′an: Xidian University Press, 2011,

    [11] [11] MIN Zhu, CAO Qun-sheng, ZHAO Lei. Study and analysis of a novel Runge-Kutta high order finite-difference time-domain[J]. IEEE IET, Microwave Antenna & Propagation, 2014, 8(12): 951-958.

    [12] [12] GIANNAKIS I, GIANNOPOULOS A A. Time-synchronized convolutional perfectly matched layer for improved absorbing performance in FDTD[J]. IEEE Antennas and wireless propagation letters, 2015, 14: 690-693.

    [13] [13] TAFIOVE A, HAGNESS S C. Computational Electrodynamics:The finite difference time domain method[M]. 3nd ed. Boston: American, 2005.

    [14] [14] OSKOOI A F, ZHANG L, AVNIEL Y, et al. The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers[J]. Optics Express, 2008, 16(15): 11376-11392.

    [15] [15] ZENG Chong, XIA Jiang-hai, RICHARD D M, et al. Application of the multiaxial perfect matched layer (M-PML) to near-surface seismic modeling with Rayleigh waves[J]. Geophysis, 2011, 76(3): T43-T52.

    [16] [16] WANG Yue, WANG Jian-guo, ZHANG Dian-hui, et al. Conformal convolutional perfectly matchedlayer with uniform stability [J]. High Power laser and Particle Beams, 2013, 2(25):441-445.

    [17] [17] ZHOU Li-bin, HU Man-li, JIA Fang, et al. Effect on bandgap of two-dimensional square photonic crystal with different incidence angle[J]. Acta Photonic Sinica, 2008, 37(11): 2213-2216.

    [18] [18] WU Zhen-hua, LI Si-min, ZHANG Wen-tao, et al. Back reflector solar cells consisting of one-dimensional photonic crystal and double-layer two-dimensional photonic crystal[J]. Acta Photonic Sinica, 2016, 45(2): 0223003.

    [19] [19] HE Feng-tao, SUN Li, XI Zhan-qiang, et al. Design and research of polarization optical splitter based on fluorine doped dual core photonic crystal fiber[J]. Acta Photonic Sinica, 2016, 45(9): 0923002.

    Tools

    Get Citation

    Copy Citation Text

    XIE Guo-da, HUANG Zhi-xiang, WANG Li-hua, WU Xian-liang. Improvement of the Stability of Convolutional Perfect Matched Layer Based on Finite Difference Time-domain Algorithm[J]. Acta Photonica Sinica, 2017, 46(8): 826001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Feb. 16, 2017

    Accepted: --

    Published Online: Oct. 30, 2017

    The Author Email: Guo-da XIE (260719802@qq.com)

    DOI:10.3788/gzxb20174608.0826001

    Topics