Journal of Geo-information Science, Volume. 22, Issue 5, 997(2020)
[1] [1] 聂翔宇, 刘新静. 城市化进程中“鬼城”的类型分析及其治理研究[J]. 南通大学学报(社会科学版), 2013,29(4):111-117. [ Nie XY, Liu XJ. Analysis of the types of "Ghost City" in the process of urbanization and its governance[J]. Journal of Nantong University(Social Science Edition), 2013,29(4):111-117. ] [ Nie X Y, Liu X J. Analysis of the types of "Ghost City" in the process of urbanization and its governance[J].Journal of Nantong University(Social Science Edition),2013,29(4):111-117. ]
[2] Ghost cities of China: The story of cities without people in the world's most populated country[M]. London: Zed Books Ltd(2015).
[3] Maximizing the potential of vacant spaces within shrinking cities, a German approach[J]. Cities, 75, 6-11(2018).
[4] [4] 段禄峰, 魏明, 车志晖. 新型城镇化背景下规划型“空城”现象解析[J]. 生态经济, 2017,33(10):116-121. [ Duan LF, WeiM, Che ZH. Analysis of the planning-type "empty city" phenomenon under the background of new urbanization[J]. Ecology and Economy, 2017,33(10):116-121. ] [ Duan L F, Wei M, Che Z H. Analysis of the planning-type "empty city" phenomenon under the background of new urbanization[J]. Ecology and Economy, 2017,33(10):116-121. ]
[7] [7] 董磊磊, 潘竟虎, 冯娅娅, 等. 基于夜间灯光的中国房屋空置的空间分异格局[J]. 经济地理, 2017,37(9):62-69,176. [ Dong LL, Pan JH, Feng YY, et al. Spatial differentiation pattern of Chinese house vacant based on nighttime light[J]. Economic Geography, 2017,37(9):62-69,176. ] [ Dong L L, Pan J H, Feng Y Y, et al. Spatial differentiation pattern of Chinese house vacant based on nighttime light[J]. Economic Geography, 2017,37(9):62-69,176. ]
[10] et alMapping China's ghost cities through the combination of nighttime satellite data and daytime satellite data[J]. Remote Sensing, 10, 1037-1055(2018).
[11] [11] 沈晓艳, 黄贤金. 基于土地供应侧的中国商品住宅空置效应分析——以35个大中城市为例[J]. 现代城市研究, 2017(10):12-17. [ Shen XL, Huang XJ. Analysis on the vacancy effect of Chinese commercial residential buildings based on land supply side: A case study of 35 large and medium-sized cities[J]. Modern Urban Research, 2018,10(7):12-17.] [ Shen X L, Huang X J. Analysis on the vacancy effect of Chinese commercial residential buildings based on land supply side: A case study of 35 large and medium-sized cities[J]. Modern Urban Research, 2018,10(7):12-17.]
[12] et alGhost cities analysis based on positioning data in China[J]. arXiv preprint arXiv:1510.08505, 11, 1-14(2015).
[13] [13] 唐如建, 付光辉. 南京市新建商品住宅空置率空间差异分析[J]. 城市问题, 2017(2):77-82. [ Tang RJ, Fu GH. Analysis on spatial difference of vacancy rate of new commercial residential buildings in Nanjing[J]. City Problems, 2017(2):77-82. ] [ Tang R J, Fu G H. Analysis on spatial difference of vacancy rate of new commercial residential buildings in Nanjing[J]. City Problems, 2017(2):77-82. ]
[14] [14] 刘云舒, 赵鹏军, 梁进社. 基于位置服务数据的城市活力研究——以北京市六环内区域为例[J]. 地域研究与开发, 2018,37(6):64-69,87. [ Liu YS, Zhao PJ, Liang JS. A study on urban vitality based on location service data: a case study of the area within the sixth ring road of Beijing[J]. Regional Research and Development, 2018,37(6):64-69,87. ] [ Liu Y S, Zhao P J, Liang J S. A study on urban vitality based on location service data: a case study of the area within the sixth ring road of Beijing[J]. Regional Research and Development, 2018,37(6):64-69,87. ]
[15] et alMeasurements of POI-based mixed use and their relationships with neighborhood vibrancy[J]. International Journal of Geographical Information Science, 31, 658-675(2017).
[16] Using multi-source geospatial big data to identify the structure of polycentric cities[J]. Remote Sensing of Environment, 202, 210-221(2017).
[17] et alPutting people in the picture: Combining big location-based social media data and remote sensing imagery for enhanced contextual urban information in Shanghai[J]. Computers, Environment and Urban Systems, 62, 99-112(2017).
[18] [18] 王明明, 王卷乐. 基于夜间灯光与土地利用数据的山东省乡镇级人口数据空间化[J]. 地球信息科学学报, 2019,21(5):699-709. [ Wang MM, Wang JL. Spatialization of township-level population based on nighttime light and land use data in Shandong Province[J]. Journal of Geo-information Science, 2019,21(5):699-709. ] [ Wang M M, Wang J L. Spatialization of township-level population based on nighttime light and land use data in Shandong Province[J]. Journal of Geo-information Science, 2019,21(5):699-709. ]
[19] [19] 谭敏, 刘凯, 柳林, 等. 基于随机森林模型的珠江三角洲30m格网人口空间化[J]. 地理科学进展, 2017,36(10):1304-1312. [ TanM, LiuK, LiuL, et al. Spatialization of 30 m grid population in the Pearl River Delta based on random forest model[J]. Progress in Geography, 2017,36(10):1304-1312. ] [ Tan M, Liu K, Liu L, et al. Spatialization of 30 m grid population in the Pearl River Delta based on random forest model[J]. Progress in Geography, 2017,36(10):1304-1312. ]
[20] [20] 李熙, 薛翔宇. 基于波士顿矩阵的夜光遥感电力消费估算方法[J]. 武汉大学学报·信息科学版, 2018,43(12):1994-2002. [ LiXi, Xue XY. Estimation method of nighttime light images' electric power consumption based on the Boston Matrix[J]. Journal of Wuhan University(Information Science Edition), 2018,43(12):1994-2002. ] [ Li Xi, Xue X Y. Estimation method of nighttime light images' electric power consumption based on the Boston Matrix[J]. Journal of Wuhan University(Information Science Edition),2018,43(12):1994-2002. ]
[23] [23] 李德仁, 李熙. 夜光遥感技术在人道主义灾难评估中的应用[J]. 自然杂志, 2018,40(3):169-176. [ LiDeren, LiXi. Use of night-time light remote sensing in humanitarian disaster evaluation[J]. Natural Journal, 2018,40(3):169-176. ] [ Li Deren, Li Xi. Use of night-time light remote sensing in humanitarian disaster evaluation[J]. Natural Journal, 2018,40(3):169-176. ]
[24] et alMonitoring the built-up environment of Shanghai on the street-block level using SAR and volunteered geographic information[J]. International Journal of Digital Earth, 10, 675-686(2017).
[27] [27] 廖明生, 王腾. 时间序列InSAR技术与应用[M]. 北京: 科学出版社, 2014. [ Liao MS, WangT.Time series InSAR technology and application[M]. Beijing: Science Press, 2014. ] [ Liao M S, Wang T. Time series InSAR technology and application[M]. Beijing: Science Press, 2014. ]
[28] et alRegional mapping of human settlements in southeastern China with multisensor remotely sensed data[J]. Remote Sensing of Environment, 112, 3668-3679(2008).
[29] [29] 叶宇, 庄宇, 张灵珠, 等. 城市设计中活力营造的形态学探究——基于城市空间形态特征量化分析与居民活动检验[J]. 国际城市规划, 2016(1):26-33. [ YeY, ZhuangY, Zhang LZ, et al. Morphological exploration of vitality creation in urban design: Based on quantitative analysis of urban spatial form characteristics and inspection of resident activities[J]. International Urban Planning, 2016(1):26-33. ] [ Ye Y, Zhuang Y, Zhang L Z, et al. Morphological exploration of vitality creation in urban design: Based on quantitative analysis of urban spatial form characteristics and inspection of resident activities[J]. International Urban Planning, 2016(1):26-33. ]
[30] [M]. Space is the machine: A configurational theory of architecture(2007).
[31] et alCharacterizing mixed-use buildings based on multi-source big data[J]. International Journal of Geographical Information Science, 32, 738-756(2018).
[32] The death and life of great american cities[M]. London: Random House LLC(1961).
[33] [33] 姚尧, 任书良, 王君毅, 等. 卷积神经网络和随机森林的城市房价微观尺度制图方法[J]. 地球信息科学学报, 2019,21(2):168-177.
Get Citation
Copy Citation Text
Jiansi YANG, Shuai LIU, Yandong WANG, Mingsheng LIAO.
Received: Oct. 23, 2019
Accepted: --
Published Online: Nov. 12, 2020
The Author Email: WANG Yandong (ydwang@whu.edu.cn)