Chinese Journal of Quantum Electronics, Volume. 33, Issue 4, 469(2016)
Unitary transformation matrix and logic circuits of 3-puzzle quantum computing
[1] [1] Kevin Igwe, Nelishia Pillay, Christopher Rae. Solving the 8-puzzle problem using genetic programming[C]. Proceedings of the South African Institute for Computer Scientists and Information Technologists, London, South Africa, 2013.
[2] [2] Alexander Reinefeld. Complete solution of the eight-puzzle and the benefit of node ordering in IDA[OL]. http://www.laborion.com/Portals/0/Ai/Heuristicssearch/93ijcai.pdf, 1993.
[3] [3] Daniel Ratner, Manfred Warmuth. The (n2-1) puzzle and related relocation problems[J]. Symbolic Computation, 1990, 10(2): 111-137.
[4] [4] Emilio G, Ortiz-Garcia, Sancho Salcedo-Sanz, et al. Automated generation and visualization of picture-logic puzzles[J]. Computers and Graphics, 2007, 31(5): 750-760.
[5] [5] Zilles S, Holte R C. The computational complexity of avoiding spurious states in state space abstraction[J]. Artificial Intelligence, 2010, 174(14): 1072-1092.
[7] [7] Aoki K, Yamanashi Y, Yoshikawa N. Multiplexing techniques of single flux quantum circuit based readout circuit for a multi-channel sensing system[J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 799-802.
Get Citation
Copy Citation Text
XU Jingming, RUAN Yue. Unitary transformation matrix and logic circuits of 3-puzzle quantum computing[J]. Chinese Journal of Quantum Electronics, 2016, 33(4): 469
Category:
Received: Apr. 29, 2015
Accepted: --
Published Online: Oct. 24, 2016
The Author Email: Jingming XU (xujingming518@126.com)