Journal of Synthetic Crystals, Volume. 49, Issue 10, 1787(2020)
Epitaxial Growth Mechanism of SiC on the Vicinal Surface Simulated by Kinetic Monte Carlo
[4] [4] Kimoto T. Bulk and epitaxial growth of silicon carbide[J]. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2): 329-351.
[7] [7] Krzyz·ewski F, Zauska-Kotur M A. Coexistence of bunching and meandering instability in simulated growth of 4H-SiC(0001) surface[J]. Journal of Applied Physics, 2014, 115(21): 213517.
[8] [8] Guo H, Huang W, Liu X, et al. Analysis of polytype stability in PVT grown silicon carbide single crystal using competitive lattice model Monte Carlo simulations [J]. AIP Advances, 2014, 4(9): 097106.
[10] [10] Chen X, Li Y. Stepped morphology on vicinal 3C- and 4H-SiC (0001) faces: a kinetic Monte Carlo study [J]. Surface Science, 2019, 681:18-23.
[11] [11] Li Y, Chen X J, Su J. Study on formation of step bunching on 6H-SiC (0001) surface by kinetic Monte Carlo method[J]. Applied Surface Science, 2016, 371: 242-247.
[12] [12] Rusanen M, Koponen I T, Kallunki J. Mixing length scales: step meandering and island nucleation on vicinal surfaces[J]. European Physical Journal B, 2003, 36(1): 141-147.
[13] [13] Bales G S. Crossover scaling during submonolayer epitaxy onvicinal substrates[J]. Surface Science, 1996, 356(1-3): L439-L444.
[14] [14] Li Y, Chen X, Su J. Effect of nucleation on instability of step meandering during step-flow growth on vicinal 3C-SiC (0001) surfaces[J]. Journal of Crystal Growth, 2017, 468(Supplement C): 28-31.
[15] [15] Krzyz·ewski F. 4H-SiC surface structure transitions during crystal growth following bunching in a fast sublimation process[J]. Journal of Crystal Growth, 2014, 401: 511-513.
[16] [16] Hoshen J, Kopelman R. Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm[J]. Physical Review B, 1976, 14(8): 3438-3445.
[17] [17] Kundin J, De Cuba M R, Gemming S, et al. Two-scale modeling of adsorption processes at structured surfaces[J]. Physica D: Nonlinear Phenomena, 2009, 238(2): 117-125.
[18] [18] Kundin J, Yürüdü C, Ulrich J, et al. A phase-field/Monte-Carlo model describing organic crystal growth from solution[J]. The European Physical Journal B, 2009, 70(3): 403-412.
[19] [19] Han Y, Gaudry , Oliveira T J, et al. Point island models for nucleation and growth of supported nanoclusters during surface deposition[J]. The Journal of Chemical Physics, 2016, 145(21): 211904.
[20] [20] Posthuma De Boer J, Ford I J, Kantorovich L, et al. Phase-field method for epitaxial kinetics on surfaces[J]. The Journal of Chemical Physics, 2018, 149(19): 194107.
[21] [21] Battaile C C. The Kinetic Monte Carlo method: Foundation, implementation, and application[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(41-42): 3386-3398.
[22] [22] Camarda M, La Magna A, La Via F. A Kinetic Monte Carlo method on super-lattices for the study of the defect formation in the growth of close packed structures [J]. Journal of Computational Physics, 2007, 227(2): 1075-1093.
Get Citation
Copy Citation Text
SHI Aihong, LI Yuan, AI Wensen. Epitaxial Growth Mechanism of SiC on the Vicinal Surface Simulated by Kinetic Monte Carlo[J]. Journal of Synthetic Crystals, 2020, 49(10): 1787
Category:
Received: --
Accepted: --
Published Online: Jan. 9, 2021
The Author Email: Aihong SHI (915080300@qq.com)
CSTR:32186.14.