Acta Photonica Sinica, Volume. 51, Issue 11, 1106002(2022)
Supercontinuum Generation from Tapered As2S3 Glass Photonic Crystal Fiber
[1] J M DUDLEY, G GENTY, S COEN. Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics, 78, 1135(2006).
[2] C R PETERSEN, N PRTLJAGA, M FARRIES et al. Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source. Optics Letters, 43, 999-1002(2018).
[3] A SCHLIESSER, N PICQUÉ, T W HÄNSCH. Mid-infrared frequency combs. Nature Photonics, 6, 440-449(2012).
[4] Shangran XIE, N TOLSTIK, J C TRAVERS et al. Coherent octave-spanning mid-infrared supercontinuum generated in As2S3-silica double-nanospike waveguide pumped by femtosecond Cr: ZnS laser. Optics Express, 24, 12406-12413(2016).
[5] F BORONDICS, M JOSSENT, C SANDT et al. Supercontinuum-based Fourier transform infrared spectromicroscopy. Optica, 5, 378-381(2018).
[6] L ORSILA, J SAND, M NÄRHI et al. Supercontinuum generation as a signal amplifier. Optica, 2, 757-764(2015).
[7] T S SAINI, U K TIWARI, R K SINHA. Design and analysis of dispersion engineered rib waveguides for on-chip mid-infrared supercontinuum. Journal of Lightwave Technology, 36, 1993-1999(2018).
[8] N SINGH, M XIN, D VERMEULEN et al. Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm. Light: Science & Applications, 7, 17131-17131(2018).
[9] Zhenrui LI, Zhixu JIA, Chuanfei YAO et al. 22.7 W mid-infrared supercontinuum generation in fluorotellurite fibers. Optics Letters, 45, 1882-1885(2020).
[10] Linyong YANG, Bin ZHANG, Jing HOU. Research progress of supercontinuum fiber laser in high power 3~5 micron band. Chinese Journal of Lasers, 49, 0101001(2021).
[11] Lihong SUN, Xunsi WANg, Qingde ZHU et al. Development of highly nonlinear chalcogenide glass and its theoretical research progress. Advances in Lasers and Optoelectronics, 53, 1-9(2016).
[12] Bin YAN, Tao HUANG, Weiwang ZHANG et al. Generation of watt-level supercontinuum covering 2-6.5 µm in an all-fiber structured infrared nonlinear transmission system. Optics Express, 29, 4048-4057(2021).
[13] Zhenrui LI, Chuanfei YAO, Zhixu JIA et al. Broadband supercontinuum generation from 600 to 5400 nm in a tapered fluorotellurite fiber pumped by a 2010 nm femtosecond fiber laser. Applied Physics Letters, 115, 091103(2019).
[14] Sijing LIANG, Lin XU, Qiang FU et al. 295-kW peak power picosecond pulses from a thulium-doped-fiber MOPA and the generation of watt-level> 2.5-octave supercontinuum extending up to 5 μm. Optics Express, 26, 6490-6498(2018).
[15] Yan YANG, Yunxiang CHEN, Yonghua LIU et al. Control of the structure and properties of Ge-As-S chalcogenide glasses. Acta Physica Sinica, 65, 087801(2016).
[16] Shixun DAI, Min WANG, Yingying WANG et al. Research progress of mid-infrared supercontinuum generation based on chalcogenide glass fiber. Advances in Lasers and Optoelectronics, 57, 071603(2020).
[17] J S SANGHERA, I D AGGARWAL, L E BUSSE et al. Chalcogenide optical fibers target mid-IR applications. Laser Focus World, 41, 83-87(2005).
[18] Xian FENG, Zhiyong YANG, Jindan SHI. Research progress on ultra-large mode field chalcogenide glass photonic crystal fibers. Chinese Journal of Lasers, 49, 0101006(2021).
[19] Haitao GUO, Min LU, Guangming TAO et al. Research progress of mid-infrared luminescent rare earth doped chalcogenide glass. Journal of Silicate, 37, 2150-2156(2009).
[20] Hao ZHANG, Haitao GUO, Yantao XU et al. Research progress of chalcogenide glass fiber for infrared laser transmission. Chinese Journal of Lasers, 49, 0101007(2021).
[21] Xingfeng WANG, Jianfeng YANG, Xingtao YAN et al. Fabrication and performance testing of flexible chalcogenide glass infrared optical fiber imaging beam. Optical Precision Engineering, 25, 3137-3144(2017).
[22] Xiaomei WANG, Chenfeng YANG, Shixun DAI et al. Spectroscopic analysis of ethanol solution detection by tapered Ge15Sb20Se65 chalcogenide glass fiber. Acta Optics Sinica, 38, 0606001(2018).
[23] Tonglei CHENG, K NAGASAKA, T H TUAN et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber. Optics Letters, 41, 2117-2120(2016).
[24] Zheming ZHAO, Bo WU, Xunsi WANG et al. Mid-infrared supercontinuum covering 2.0-16 μm in a low‐loss telluride single‐mode fiber. Laser & Photonics Reviews, 11, 1700005(2017).
[25] Jinmei YAO, Bin ZHANG, Jing HOU. 2.3~9.5 μm all-fiber mid-infrared supercontinuum light source. Chinese Journal of Lasers, 47, 1216002(2020).
[26] Bo WU, Zheming ZHAO, Xunsi WANG et al. Preparation and performance analysis of Te-based far-infrared chalcogenide glass fiber. Acta Physica Sinica, 66, 127-133(2017).
[27] Yingying WANG, Shixun DAI, Guangtao LI et al. 1.4-7.2 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime. Optics Letters, 42, 3458-3461(2017).
[28] D D HUDSON, S ANTIPOV, L LI et al. Toward all-fiber supercontinuum spanning the mid-infrared. Optica, 4, 1163-1166(2017).
[29] Yingying WANG, Shixun DAI, Xuefeng PENG et al. Mid-infrared supercontinuum generation spanning from 1.9 to 5.7 μm in a chalcogenide fiber taper with ultra-high NA. Infrared Physics & Technology, 88, 102-105(2018).
[30] D FREEMAN, C GRILLET, M W LEE et al. Chalcogenide glass photonic crystals. Photonics and Nanostructures-Fundamentals and Applications, 6, 3-11(2008).
[31] B DABAS, R K SINHA. Dispersion characteristic of hexagonal and square lattice chalcogenide As2Se3 glass photonic crystal fiber. Optics Communications, 283, 1331-1337(2010).
[32] Shuo LIU, Junzhou TANG, Zijun LIU et al. Research on extrusion preparation and properties of low-loss chalcogenide glass fiber. Acta Optics Sinica, 39-46(2016).
[33] N GRANZOW, S P STARK, M A SCHMIDT et al. Supercontinuum generation in chalcogenide-silica step-index fibers. Optics Express, 19, 21003-21010(2011).
Get Citation
Copy Citation Text
Lin SHE, Niannian XU, Peilong YANG, Peiqing ZHANG, Zhenrui LI, Pengfei WANG, Weimin SUN. Supercontinuum Generation from Tapered As2S3 Glass Photonic Crystal Fiber[J]. Acta Photonica Sinica, 2022, 51(11): 1106002
Category: Fiber Optics and Optical Communications
Received: Feb. 28, 2022
Accepted: Apr. 18, 2022
Published Online: Dec. 13, 2022
The Author Email: WANG Pengfei (pwang@hrbeu.edu.cn)