Laser & Optoelectronics Progress, Volume. 61, Issue 6, 0618007(2024)

Time-Domain Coherent Raman Scattering Techniques (Invited)

Qiaozhi Yu, Yafeng Qi, and Hanqing Xiong*
Author Affiliations
  • National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing 100871, China
  • show less
    References(52)

    [1] Raman C V. A change in the wavelength in light scattering[J]. Nature, 121, 619(1928).

    [2] Nie S, Emory S R. Probing single molecules and nanoparticles by surface-enhanced Raman scattering[J]. Science, 275, 1102-1106(1997).

    [3] Rigneault H, Berto P. Tutorial: coherent Raman light matter interaction processes[J]. APL Photonics, 3, 091101(2018).

    [4] Min W, Freudiger C W, Lu S J et al. Coherent nonlinear optical imaging: beyond fluorescence microscopy[J]. Annual Review of Physical Chemistry, 62, 507-530(2011).

    [5] Laubereau A, Kaiser W. Vibrational dynamics of liquids and solids investigated using picosecond light pulses[J]. Reviews of Modern Physics, 50, 607-665.

    [6] Cheng J X, Xie X S. Coherent antistokes Raman scattering microscopy: instrumentation, theory, and applications[J]. The Journal of Physical Chemistry B, 108, 827-840(2004).

    [7] Terhune R W, Maker P D, Savage C M. Measurements of nonlinear light scattering[J]. Physical Review Letters, 14, 681-684(1965).

    [8] Duncan M D, Reintjes J, Manuccia T J. Scanning coherent anti-Stokes Raman microscope[J]. Optics Letters, 7, 350-352(1982).

    [9] Zumbusch A, Holtom G R, Xie X S. Three-dimensional vibrational imaging by coherent antiStokes Raman scattering[J]. Physical Review Letters, 82, 4142-4145(1999).

    [10] Woodbury E J N W K. Ruby laser operation in near IR[J]. Proceedings of the IRE, 50, 2347-2348(1962).

    [11] Owyoung A, Jones E D. Stimulated Raman spectroscopy using low-power cw lasers[J]. Optics Letters, 1, 152-154(1977).

    [12] Freudiger C W, Min W, Saar B G et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy[J]. Science, 322, 1857-1861(2008).

    [13] Ozeki Y, Umemura W, Otsuka Y et al. High-speed molecular spectral imaging of tissue using stimulated Raman scattering[J]. Nature Photonics, 6, 845-851(2012).

    [14] Fu D, Holtom G, Freudiger C et al. Hyperspectral imaging with stimulated Raman scattering using chirped femtosecond lasers[J]. Journal of Physical Chemistry B, 117, 4634-4640(2013).

    [15] Freudiger C W, Min W, Holtom G R et al. Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy[J]. Nature Photonics, 5, 103-109(2011).

    [16] Liao C S, Slipchenko M N, Wang P et al. Microsecond-scale vibrational spectroscopic imaging by multiplex-stimulated Raman scattering microscopy[J]. Light, Science & Applications, 4, e265.

    [17] Kukura P, McCamant D W, Yoon S et al. Structural observation of primary isomerization in vision using femtosecond-stimulated Raman[J]. Science, 310, 1006-1009(2005).

    [18] Kuramochi H, Tahara T. Tracking ultrafast structural dynamics by time-domain Raman spectroscopy[J]. Journal of the American Chemical Society, 143, 9699-9717(2021).

    [19] Kuramochi H, Takeuchi S, Yonezawa K et al. Probing the early stages of photoreception in photoactive yellow protein using ultrafast time-domain Raman spectroscopy[J]. Nature Chemistry, 9, 660-666(2017).

    [20] Oron D, Raanan D, Soffer Y, Cheng J X, Min W, Ozeki Y et al. Impulsive SRS microscopy[M]. Stimulated Raman scattering microscopy, 99-113(2022).

    [21] de Silvestri S, Fujimoto J G, Ippen E P et al. Femtosecond time-resolved measurements of optic phonon dephasing by impulsive stimulated Raman scattering in α-perylene crystal from 20 to 300 K[J]. Chemical Physics Letters, 116, 146-152(1985).

    [22] Ruhman S, Joly A G, Nelson K A. Coherent molecular vibrational motion is observed in the time domain through impulsive stimulated Raman scattering[J]. IEEE Journal of Quantum Electronics, 24, 460-469(1988).

    [23] Dudovich N, Oron D, Silberberg Y. Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy[J]. Nature, 418, 512-514(2002).

    [24] Bor Z, Horváth Z L. Distortion of femtosecond pulses in the lenses Wave optical description[J]. Optics Communications, 94, 249-258(1992).

    [25] Ogilvie J P, Beaurepaire E, Alexandrou A et al. Fourier-transform coherent anti-Stokes Raman scattering microscopy[J]. Optics Letters, 31, 480-482(2006).

    [26] Raanan D, Lüttig J, Silberberg Y et al. Vibrational spectroscopy via stimulated Raman-induced Kerr lensing[J]. APL Photonics, 3, 092501(2018).

    [27] McMorrow D, Lotshaw W T, Kenney-Wallace G A. Femtosecond Raman-induced Kerr effect. Temporal evolution of vibrational normal modes in halogenated methanes[J]. Chemical Physics Letters, 145, 309-314(1988).

    [28] Wahlstrand J K, Merlin R, Li X Q et al. Impulsive stimulated Raman scattering: comparison between phase-sensitive and spectrally filtered techniques[J]. Optics Letters, 30, 926-928(2005).

    [29] Peterson W, Hiramatsu K, Goda K. Sagnac-enhanced impulsive stimulated Raman scattering for highly sensitive low-frequency Raman spectroscopy[J]. Optics Letters, 44, 5282-5285(2019).

    [30] Peterson W, de Pablo J G, Lindley M et al. Ultrafast impulsive Raman spectroscopy across the terahertz fingerprint region[J]. Advanced Photonics, 4, 016003(2022).

    [31] Weiner A. M. Femtosecond pulse shaping using spatial light modulators[J]. Review of Scientific Instruments, 71, 1929-1960(2000).

    [32] Dudovich N, Oron D, Silberberg Y. Single-pulse coherent anti-Stokes Raman spectroscopy in the fingerprint spectral region[J]. Journal of Chemical Physics, 118, 9208-9215(2003).

    [33] Oron D, Dudovich N, Silberberg Y. Single-pulse phase-contrast nonlinear Raman spectroscopy[J]. Physical Review Letters, 89, 273001(2002).

    [34] Katz O, Levitt J M, Grinvald E et al. Single-beam coherent Raman spectroscopy and microscopy via spectral Notch shaping[J]. Optics Express, 18, 22693-22701(2010).

    [35] Oron D, Silberberg Y. Control and measurement of a nonresonant Raman wavepacket using a single ultrashort pulse[J]. Chemical Physics, 318, 163-169(2005).

    [36] Oron D, Dudovich N, Silberberg Y. All-optical processing in coherent nonlinear spectroscopy[J]. Physical Review A, 70, 023415(2004).

    [37] Ren L Q, Frostig H, Kumar S et al. Coherently-enhanced lock-in-free chirped-CARS microscopy by Notch filtering[J]. Optics Express, 25, 28201-28209(2017).

    [38] Falconieri M, Gagliardi S, Rondino F et al. High-sensitivity impulsive stimulated Raman spectrometer with fast data acquisition[J]. Journal of Raman Spectroscopy, 52, 664-669(2021).

    [39] Raanan D, Ren L Q, Oron D et al. Impulsive Raman spectroscopy via precision measurement of frequency shift with low-energy excitation[J]. Optics Letters, 43, 470-473.

    [40] Raanan D, Audier X, Shivkumar S et al. Sub-second hyper-spectral low-frequency vibrational imaging via impulsive Raman excitation[J]. Optics Letters, 44, 5153-5156(2019).

    [41] Lim S H, Chen B C, Sung J. Fourier transform spectral interferometric coherent anti-Stokes Raman scattering (FTSI-CARS) microscopy[J]. Proceedings of SPIE, 6860, 686013(2008).

    [42] Tamamitsu M, Sakaki Y, Nakamura T et al. Ultrafast broadband Fourier-transform CARS spectroscopy at 50000 spectra/s enabled by a scanning Fourier-domain delay line[J]. Vibrational Spectroscopy, 91, 163-169(2017).

    [43] Kinegawa R, Hiramatsu K, Hashimoto K et al. High-speed broadband Fourier-transform coherent antiStokes Raman scattering spectral microscopy[J]. Journal of Raman Spectroscopy, 50, 1141-1146(2019).

    [44] Hiramatsu K, Ideguchi T, Yonamine Y et al. High-throughput label-free molecular fingerprinting flow cytometry[J]. Science Advances, 5, eaau0241(2019).

    [45] Nishiyama R, Hiramatsu K, Kawamura S et al. Color-scalable flow cytometry with Raman tags[J]. PNAS Nexus, 2, pgad001(2023).

    [46] Ren L Q, Hurwitz I, Raanan D et al. Terahertz coherent anti-Stokes Raman scattering microscopy[J]. Optica, 6, 52-55(2019).

    [47] Hashimoto K, Omachi J, Ideguchi T. Ultra-broadband rapid-scan Fourier-transform CARS spectroscopy with sub-10-fs optical pulses[J]. Optics Express, 26, 14307-14314(2018).

    [48] Lu M J, Zhang Y J, Chen X Y et al. Interpulse stimulation Fourier-transform coherent anti-Stokes Raman spectroscopy[J]. Photonics Research, 11, 357-363(2023).

    [49] Ideguchi T, Holzner S, Bernhardt B et al. Coherent Raman spectro-imaging using laser frequency combs[J]. Nature, 502, 355-358(2013).

    [50] Kameyama R, Takizawa S, Hiramatsu K et al. Dual-comb coherent Raman spectroscopy with near 100% duty cycle[J]. ACS Photonics, 8, 975-981(2021).

    [51] Xiong H Q, Shi L X, Wei L et al. Stimulated Raman-excited fluorescence spectroscopy and imaging[J]. Nature Photonics, 13, 412-417(2019).

    [52] Yu Q Z, Yao Z J, Zhang H L et al. Transient-stimulated Raman-excited fluorescence spectroscopy[J]. Journal of the American Chemical Society, 145, 7758-7762(2023).

    Tools

    Get Citation

    Copy Citation Text

    Qiaozhi Yu, Yafeng Qi, Hanqing Xiong. Time-Domain Coherent Raman Scattering Techniques (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(6): 0618007

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Microscopy

    Received: Jan. 12, 2024

    Accepted: Feb. 19, 2024

    Published Online: Mar. 29, 2024

    The Author Email: Xiong Hanqing (xiong.hanqing@pku.edu.cn)

    DOI:10.3788/LOP240515

    Topics