Journal of the Chinese Ceramic Society, Volume. 50, Issue 12, 3199(2022)
Effect of Mn Doping on Electrocaloric Properties of 0.77NaNbO3-0.23BaTiO3 Ferroelectric Ceramics
[1] [1] VALANT M. Electrocaloric materials for future solid-state refrigeration technologies[J]. Progr Mater Sci, 2012, 57(6): 980-1009.
[2] [2] SHI J Y, HAN D L, LI Z C, et al. Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration[J]. Joule, 2019, 3(5): 1200-1225.
[3] [3] MENG Y, PU J H, PEI Q B. Electrocaloric cooling over high device temperature span[J]. Joule, 2021, 5(4): 780-793.
[5] [5] GU H M, CRAVEN B, QIAN X S, et al. Simulation of chip-size electrocaloric refrigerator with high cooling-power density[J]. Appl Phys Lett, 2013, 102(11): 112901.
[8] [8] SINYAVSKY Y V, BRODYANSKY V M. Experimental testing of electrocaloric cooling with transparent ferroelectric ceramic as a working body[J]. Ferroelectrics, 1992, 131(1): 321-325.
[9] [9] MISCHENKO A S, ZHANG Q, SCOTT J F, et al. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3[J]. Science, 2006, 311(5765): 1270-1271.
[10] [10] BAI Y, ZHENG G P, DING K, et al. The giant electrocaloric effect and high effective cooling power near room temperature for BaTiO3 thick film[J]. J Appl Phys, 2011, 110(9): 1983.
[11] [11] ZHANG Q M, BHARTI V, ZHAO X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly (vinylidene fluoride- trifluoroethylene) copolymer[J]. Science, 1998, 280(5372): 2101-2104.
[12] [12] BAI Y, ZHENG G, DING K, et al. The giant electrocaloric effect and high effective cooling power near room temperature for BaTiO3 thick film[J]. J Appl Phys, 2011, 110(9): 94103.
[13] [13] ROSE M C, COHEN R E. Giant electrocaloric effect around Tc[J]. Phys Rev Lett, 2012, 109(18): 187604.
[14] [14] ZUO R, QI H, FU J, et al. Multiscale identification of local tetragonal distortion in NaNbO3-BaTiO3 weak relaxor ferroelectrics by Raman, synchrotron X-ray diffraction, and absorption spectra[J]. Appl Phys Lett, 2017, 111(13): 132901.
[15] [15] ZUO R, QI H, FU J, et al. Giant electrostrictive effects of NaNbO3-BaTiO3 lead-free relaxor ferroelectrics[J]. Appl Phys Letters, 2016, 108(23): 232904.
[16] [16] TAO H, YANG J L, LYU X, et al. Electrocaloric behavior and piezoelectric effect in relaxor NaNbO3-based ceramics[J]. J Am Ceram Soc, 2019, 102(5): 2578-2586.
[17] [17] ZHANG C, DU Q P, LI W R, et al. High electrocaloric effect in barium titanate-sodium niobate ceramics with core-shell grain assembly[J]. J Materiomics, 2020, 6(3): 618-627.
[18] [18] MISHRA S K, CHOUDHURY N, CHAPIOT S L, et al. Competing antiferroelectric and ferroelectric interactions in NaNbO3: Neutron diffraction and theoretical studies[J]. Phys Rev B, 2007, 76(2): 024110.
[19] [19] YING Y, FENG G, FLORIAN W, et al. Significantly enhanced room temperature electrocaloric response with superior thermal stability in sodium niobate-based bulk ceramics[J]. J Mater Chem A, 2019, 7(19): 11665-11672.
[20] [20] NIU X, JIAN X, CHEN X, et al. Enhanced electrocaloric effect at room temperature in Mn2+ doped lead-free (BaSr)TiO3 ceramics via a direct measurement[J]. J Adv Ceram, 2021, 10(3): 482-492.
[21] [21] HU Q Y, TIAN Y, ZHU Q S, et al. Achieve ultrahigh energy storage performance in BaTiO3-Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction[J]. Nano Energy, 2020, 67: 11665-11672.
[22] [22] LI F, ZHAI J W, SHEN B, et al. Simultaneously high-energy storage density and responsivity in quasi-hysteresis-free Mn-doped Bi0.5Na0.5TiO3-BaTiO3-(Sr0.7Bi0.2□0.1)TiO3 ergodic relaxor ceramics[J]. Mater Res Lett, 2018, 6(7): 345-352.
[23] [23] ZHOU M X, LIANG R H, ZHOU Z Y, et al. Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy[J]. J Mater Chem A, 2018, 6(37): 17896-17904.
[24] [24] ZHOU M, LIANG R, ZHOU Z, et al. Potentiality of Bi and Mn co-doped lead-free NaNbO3 ceramics as a pyroelectric material for uncooled infrared thermal detectors[J]. J Eur Ceram Soc, 2019, 36(6): 2058-2063.
[25] [25] FAN Pengyuan, ZHANG Shantao, XU Jiwen, et al. Relaxor/antiferroelectric composites: a solution to achieve high energy storage performance in lead-free dielectric ceramics[J]. J Mater Chem C, 2020, 8(17): 5681-5691.
[26] [26] QI He, ZUO Ruzhong. Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3-NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency[J]. J Mater Chem A, 2019, 7(8): 3971-3978.
[27] [27] LU Shengguo, LI Dandan, LIN Xiongwen, et al. Influence of electric field on the phenomenological coefficient and electrocaloric strength in ferroelectrics[J]. Acta Phys Sin, 2020, 69(12): 127701.
[28] [28] LU Shengguo, LIN Xiongwen, LI Jiang, et al. Enhanced electrocaloric strengths at room temperature in (SrxBa1-x)(Sn0.05Ti0.95)O3 lead-free ceramics[J]. J Alloys Compd, 2021, 871: 159519.
Get Citation
Copy Citation Text
DOU Zhanming, XIAO Wenrong, ZHAO Xiaorong, ZHANG Guangzu, JIANG Shenglin. Effect of Mn Doping on Electrocaloric Properties of 0.77NaNbO3-0.23BaTiO3 Ferroelectric Ceramics[J]. Journal of the Chinese Ceramic Society, 2022, 50(12): 3199
Special Issue:
Received: Jul. 6, 2022
Accepted: --
Published Online: Jan. 20, 2023
The Author Email: Zhanming DOU (douzhanming@163.com)