Journal of the Chinese Ceramic Society, Volume. 52, Issue 9, 2862(2024)
Research Progress on Polymer-Derived Nitride Ceramics for Wave Transparent at High Temperature
[3] [3] ASIM M, SABA N, JAWAID M, et al. A review on phenolic resin and its composites[J]. Curr Anal Chem, 2018, 14(3): 185–197.
[5] [5] ZHAO Z, ZHOU G X, YANG Z H, et al. Direct ink writing of continuous SiO2 fiber reinforced wave-transparent ceramics[J]. J Adv Ceram, 2020, 9(4): 403–412.
[6] [6] PETERS P W M, DANIELS B, CLEMENS F, et al. Mechanical characterisation of mullite-based ceramic matrix composites at test temperatures up to 1 200 ℃[J]. J Eur Ceram Soc, 2000, 20(5): 531–535.
[7] [7] LI D X, JIA D C, YANG Z H, et al. Principles, design, structure and properties of ceramics for microwave absorption or transmission at high-temperatures[J]. Int Mater Rev, 2022, 67(3): 266–297.
[8] [8] SUZDAL’TSEV E I. Radio-transparent ceramics: Yesterday, today,tomorrow[J]. Refract Ind Ceram, 2015, 55(5): 377–390.
[9] [9] ZHOU J, YE F, CHENG L F, et al. Development of high-temperature wave-transparent nitride-based CFCMCs for aircraft radomes[J].Compos Part A Appl Sci Manuf, 2023, 167: 107444.
[10] [10] HU X, SHAO C W, WANG J, et al. Characterization and high-temperature degradation mechanism of continuous silicon nitride fibers[J]. J Mater Sci, 2017, 52(12): 7555–7566.
[11] [11] LONG X, SHAO C W, WANG J, et al. High-temperature microstructural evolution of SiCN fibers derived from polycarbosilane with different C/N ratios[J]. J Eur Ceram Soc, 2020, 40(3): 622–629.
[12] [12] THIYAGARAJAN G B, DEVASIA R. Simple and low-cost synthetic route for SiBCN ceramic powder from a boron-modified cyclotrisilazane[J]. J Am Ceram Soc, 2019, 102(1): 476–489.
[13] [13] NGUYEN T T, MUKHOPADHYAY T K, MACMILLAN S N, et al.Synthesis of aminosilane chemical vapor deposition precursors and polycarbosilazanes through manganese-catalyzed Si–N dehydrocoupling[J]. ACS Sustainable Chem Eng, 2022, 10(13):4218–4226.
[14] [14] HOU Y B, LI B, SHAO C W, et al. Effect of high-temperature annealing in air and N2 atmosphere on the mechanical properties of Si3N4 fibers[J]. Mater Sci Eng A, 2018, 724: 502–508.
[15] [15] LI D, ZHANG C R, LI B, et al. Effects of heat treatment on properties of boron nitride fiber[J]. Sci China Technol Sci, 2012, 55(5):1376–1380.
[16] [16] LONG X, SHAO C W, WANG Y D. Effects of boron content on the microwave-transparent property and high-temperature stability of continuous SiBN fibers[J]. J Am Ceram Soc, 2020, 103(8):4436–4444.
[17] [17] LONG X, SHAO C W, WANG Y D. The formation of chemical/structural gradients in strong covalent bonded SiBN fibers under active nitrogen atmosphere[J]. J Eur Ceram Soc, 2021, 41(6):3333–3340.
[18] [18] LONG X, WU Z Y, SHAO C W, et al. High-temperature oxidation behavior of SiBN fibers in air[J]. J Adv Ceram, 2021, 10(4): 768–777.
[19] [19] PENG Y Q, HAN K Q, ZHAO X, et al. Large-scale preparation of SiBN ceramic fibres from a single source precursor[J]. Ceram Int, 2014,40(3): 4797–4804.
[20] [20] HU X, SHAO C W, WANG J, et al. Effects of residual radicals on compositional and structural stability of silicon nitride fibers[J]. J Eur Ceram Soc, 2017, 37(15): 4497–4503.
[21] [21] SEYFERTH D, WISEMAN G H, PRUD’HOMME C. A liquid silazane precursor to silicon nitride[J]. J Am Ceram Soc, 1983, 66(1):13–14.
[22] [22] ARAI M, FUNAYAMA O, NISHII H, et al. High-purity silicon nitride fibers: US4818611[P]. 1989–04–04.
[23] [23] FUNAYAMA O, ARAI M, TASHIRO Y, et al. Tensile strength of silicon nitride fibers produced from perhydropolysilazane[J]. J Ceram Soc Japan, 1990, 98(1133): 104–107.
[25] [25] KOKOTT S, MOTZ G. Cross-linking via electron beam treatment of a tailored polysilazane (ABSE) for processing of ceramic SiCN-fibers[J].Soft Mater, 2007, 4(2/4): 165–174.
[26] [26] TRASSL S, KLEEBE H J, ST?RMER H, et al. Characterization of the free-carbon phase in Si—C—N ceramics: Part II, comparison of different polysilazane precursors[J]. J Am Ceram Soc, 2002, 85(5):1268–1274.
[27] [27] KOKOTT S, MOTZ G. Modifizierung des ABSE-polycarbosilazans mit multi-walled carbon nanotubes zur herstellung spinnf?higer massen[J]. Materialwissenschaft Werkst, 2007, 38(11): 894–900.
[28] [28] KOKOTT S, HEYMANN L, MOTZ G. Rheology and processability of multi-walled carbon nanotubes—ABSE polycarbosilazane composites[J]. J Eur Ceram Soc, 2008, 28(5): 1015–1021.
[29] [29] FLORES O, BORDIA R K, BERNARD S, et al. Processing and characterization of large diameter ceramic SiCN monofilaments from commercial oligosilazanes[J]. RSC Adv, 2015, 5(129): 107001–107011.
[30] [30] FLORES O, SCHMALZ T, KRENKEL W, et al. Selective cross-linking of oligosilazanes to tailored meltable polysilazanes for the processing of ceramic SiCN fibres[J]. J Mater Chem A, 2013, 1(48):15406–15415.
[31] [31] LU L, FENG C X, SONG Y C. Curing polysilazane fibres by exposure to boron trichloride[J]. J Mater Sci Lett, 1998, 17(6): 481–484.
[32] [32] LU L, SONG Y C, FENG C X. Composition and structure of boron-containing Si:N:C fibres at high temperature[J]. J Mater Sci Lett,1998, 17(7): 599–602.
[33] [33] YANG X J, LI B, LI D, et al. High-temperature properties and interface evolution of silicon nitride fiber reinforced silica matrix wave-transparent composite materials[J]. J Eur Ceram Soc, 2019,39(2/3): 240–248.
[34] [34] YANG X J, LI B, LI D, et al. Fabrication and oxidation resistance of silicon nitride fiber reinforced silica matrix wave-transparent composites[J]. J Mater Sci Technol, 2019, 35(12): 2761–2766.
[36] [36] WANG P, CHENG L F, ZHANG Y N, et al. Flexible SiC/Si3N4 composite nanofibers with in situ embedded graphite for highly efficient electromagnetic wave absorption[J]. ACS Appl Mater Interfaces, 2017, 9(34): 28844–28858.
[37] [37] SEIFOLLAHI BAZARJANI M, KLEEBE H J, MüLLER M M, et al.Nanoporous Silicon Oxycarbonitride Ceramics Derived from Polysilazanes in situ Modified with Nickel Nanoparticles[J]. Chem Mater, 2011, 23(18): 4112–4123.
[40] [40] ZHAN Y, GROTTENMüLLER R, LI W, et al. Evaluation of mechanical properties and hydrophobicity of room-temperature,moisture-curable polysilazane coatings[J]. J Appl Polym Sci, 2021,138(21): e50469.
[42] [42] KANDI K K, PUNUGUPATI G, PAGIDI M, et al. A novel gelcast SiO2–Si3N4–BN ceramic composites for radome applications[J].Silicon, 2022, 14(13): 8179–8192.
[44] [44] TOURY B, MIELE P, CORNU D, et al. Boron nitride fibers prepared from symmetric and asymmetric alkylaminoborazines[J]. Adv Funct Mater, 2002, 12(3): 228.
[45] [45] TAN J, GE M, YU S Q, et al. Microstructures and properties of ceramic fibers of h-BN containing amorphous Si3N4[J]. Materials,2019, 12(23): 3812.
[46] [46] DU Y A, WANG B, LI W, et al. Design and synthesis of a novel spinnable polyborazine precursor with high ceramic yield via one-pot copolymerization[J]. J Am Ceram Soc, 2021, 104(11): 5509–5520.
[47] [47] MENG F X, LI W, DU Y A, et al. Insight into the evolution process from novel polyborazine precursor PPMAB to inorganic BN fiber[J].Ceram Int, 2022, 48(22): 33373–33380.
[48] [48] DU Y A, WANG B, MENG F X, et al. Nearly stoichiometric BN fiber with high crystallinity achieved by boron trichloride assisted curing process[J]. J Am Ceram Soc, 2022, 105(1): 82–89.
[49] [49] ZHANG Y B, WANG B, MENG F X, et al. Influence of micro-tension on fiber orientation and crystallization in continuous polymer-derived boron nitride fiber[J]. Ceram Int, 2024, 50(2): 3270–3275.
[51] [51] DU Y A, WANG B, ZHANG Y B, et al. Online preparation of high-quality BN coatings with atomic diffusion based on carbon-free water-soluble precursor[J]. J Adv Ceram, 2024, 13(3): 272–281.
[53] [53] RIEDEL R, KIENZLE A, DRESSLER W, et al. A silicoboron carbonitride ceramic stable to 2 000 ℃[J]. Nature, 1996, 382(6594):796–798.
[54] [54] VIARD A, GOTTARDO L, LOPEZ-FERBER D, et al. Molecular design of melt-spinnable co-polymers as Si—B—C—N fiber precursors[J].Dalton Trans, 2017, 46(39): 13510–13523.
[55] [55] BALDUS P, JANSEN M, SPORN D. Ceramic fibers for matrix composites in high-temperature engine applications[J]. Science, 1999,285(5428): 699–703.
[56] [56] FUNAYAMA O, NAKAHARA H, TEZUKA A, et al. Development of Si—B—O—N fibres from polyborosilazane[J]. J Mater Sci, 1994, 29(8):2238–2244.
[57] [57] DIRECT TO PHASE II – production of silicon boron nitride (SiBN) fibers for ceramic matric composite (CMC) radomes in hypersonic applications, [OL]. [2023–03–08]. https://www.highergov.com/sbiropportunity/direct-to-phase-ii-production-of-silicn231-d06-sbir-2023-9a589098/
[58] [58] ANDERSEN C A, KEIL K, MASON B. Silicon oxynitride: A meteoritic mineral[J]. Science, 1964, 146(3641): 256–257.
[59] [59] HUANG Z K, GREIL P, PETZOW G. Formation of silicon oxinitride from Si3N4 and SiO2 in the presence of Al2O3[J]. Ceram Int, 1984,10(1): 14–17.
[60] [60] BILLY M, BOCH P, DUMAZEAU C, et al. Preparation and properties of new silicon oxynitride based ceramics[J]. Ceram Int, 1981, 7(1):13–18.
[61] [61] YU G E, PARRICK J, EDIRISINGHE M, et al. Synthesis of silicon oxynitride from a polymeric precursor[J]. J Mater Sci, 1993, 28(15):4250–4254.
[64] [64] YU Y F, MAH T I. Si—O—N ceramics from organosilicon polymers[J].MRS Online Proc Libr, 1986, 73(1): 559–564.
[65] [65] GUNJI T, TANIGUCHI Y, ABE Y. Preparation of polysiloxazanes and their transformation to silicon oxynitride[J]. J Ceram Soc Japan,2006, 114(1330): 492–496.
[66] [66] IWASE Y, HORIE Y, DAIKO Y, et al. Synthesis of a novel polyethoxysilsesquiazane and thermal conversion into ternary silicon oxynitride ceramics with enhanced thermal stability[J]. Materials, 2017,10(12): 1391.
[67] [67] IWASE Y, HORIE Y, HONDA S, et al. Microporosity and CO2 capture properties of amorphous silicon oxynitride derived from novel polyalkoxysilsesquiazanes[J]. Materials, 2018, 11(3): 422.
[68] [68] ZHANG Z B, WANG R, WANG X J, et al. Synthesis and thermal behavior of polymeric precursor for carbon-free silicon oxynitride ceramic[J]. J Appl Polym Sci, 2012, 123(2): 1094–1099.
Get Citation
Copy Citation Text
LONG Xin, WANG Chiyuan, SHAO Changwei, WANG Qianlong. Research Progress on Polymer-Derived Nitride Ceramics for Wave Transparent at High Temperature[J]. Journal of the Chinese Ceramic Society, 2024, 52(9): 2862
Category:
Received: Feb. 23, 2024
Accepted: --
Published Online: Nov. 8, 2024
The Author Email: Xin LONG (longxin10@nudt.edu.cn)