International Journal of Extreme Manufacturing, Volume. 5, Issue 1, 15001(2023)
Controllable rectification on the thermal conductivity of porous YBa2Cu3O7.x superconductors from 3D-printing
[1] [1] Uher C 1990 Thermal conductivity of high-Tc superconductors J. Supercond. 3 337–89
[2] [2] Terzijska B M, Wawryk R, Dimitrov D A, Marucha C, Kovachev V T and Rafalowicz J 1992 Thermal conductivity of YBCO and thermal conductance at YBCO/ruby boundary part 1: joint experimental set-up for simultaneous measurements and experimental study in the temperature range 10–260 K Cryogenics 32 53–59
[3] [3] Zeini B, Freimuth A, Büchner B, Galffy M, Gross R, Kampf A P, Kl.ser M, Müller-Vogt G and Winkler L 2001 Thermal conductivity and thermal hall effect in Bi-and Y-based high-Tc superconductors Eur. Phys. J. B 20 189–208
[4] [4] Ausloos M 2001 Electrical and thermal transport properties in high Tc superconductors: effects of a magnetic field Phys. C 354 160–4
[5] [5] SuXY,LiuC,ZhouJ,ZhangXYandZhouYH2020A method to access the electro-mechanical properties of superconducting thin film under uniaxial compression Acta Mech. Sin. 36 1046–50
[6] [6] Tewordt L and W.lkhausen T 1989 Theory of thermal conductivity of the lattice for high-Tc superconductors Solid State Commun. 70 839–44
[7] [7] Regueiro M D N and Castello D 1991 Thermal conductivity of high temperature superconductors Int J. Mod. Phys. B 5 2003–35
[8] [8] Jing Z 2016 Coupled multiphysics modeling of the thermal-magnetic-mechanical instability behavior in bulk superconductors during pulsed field magnetization Supercond. Sci. Technol. 29 105001
[9] [9] Jing Z, Yong H D and Zhou Y H 2016 Influences of non-uniformities and anisotropies on the flux avalanche behaviors of type-II superconducting films Supercond. Sci. Technol. 29 105001
[10] [10] Jing Z, Yong H D and Zhou Y H 2015 Dendritic flux avalanches and the accompanied thermal strain in type-II superconducting films: effect of magnetic field ramp rate Supercond. Sci. Technol. 28 075012
[11] [11] Jing Z and Ainslie M D 2020 Numerical simulation of flux avalanches in type-II superconducting thin films under transient AC magnetic fields Supercond. Sci. Technol. 33 084006
[12] [12] Jing Z 2020 Numerical modelling and simulations on the mechanical failure of bulk superconductors during magnetization: based on the phase-field method Supercond. Sci. Technol. 33 075009
[13] [13] Jezowski A, Mucha J and Pompe G 1987 Thermal conductivity of the amorphous alloy Fe40Ni40P14B6 between 80 and 300 K J. Phys. D: Appl. Phys. 20 1500–6
[14] [14] Uher C and Kaiser A B 1987 Thermal transport properties of YBa2Cu3O7 superconductors Phys. Rev. B 36 5680–3
[15] [15] Morelli D T, Heremans J and Swets D E 1987 Thermal conductivity of superconductive Y–Ba–Cu–O Phys. Rev. B 36 3917–9
[16] [16] Ikebe M, Fujishiro H, Naito T, Noto K, Kohayashi S and Yoshizawa S 1994 Thermal conductivity of YBCO(123) and YBCO(211) mixed crystals prepared by MMTG Cryogenics 34 57–61
[17] [17] Peacor S D, Cohn J L and Uher C 1991 Effect of magnetic field on thermal conductivity of YBa2Cu3O7-δ single crystals Phys. Rev. B 43 8721–4
[18] [18] Hull J R 1989 High temperature superconducting current leads for cryogenic apparatus Cryogenics 29 1116–23
[19] [19] Salama K, Selvamanickam V, Gao L and Sun K 1989 High current density in bulk YBa2Cu3Ox superconductor Appl. Phys. Lett. 54 2352–4
[20] [20] Flik M I and Tien C L 1990 Size effect on the thermal conductivity of high-Tc thin-film superconductors J. Heat Transfer 112 872–81
[21] [21] LiYB,MaYB,LiuC,ZhangXY, YongHDandZhouYH 2021 Fluorescent paint for determination on the effective thermal conductivity of YBCO coated conductor Supercond. Sci. Technol. 34 035029
[22] [22] Castellazzi S, Cimberle M R, Ferdeghini C, Giannini E, Grasso G, Marrè D, Putti M and Siri A S 1997 Thermal conductivity of a BSCCO(2223) c-oriented tape: a discussion on the origin of the peak Phys. C 273 314–22
[23] [23] Yamamoto H, Sano M, Ozawa S, Tanaka M, Kaneko M, Matsubara Y and Ogasawara T 1991 Thermal conductivity of high Tc YBaCuO bulk prepared by melt growth technique Supercond. Sci. Technol. 4 S355–257
[24] [24] Rodríguez J E 2008 Ag-YBCO compounds as thermoelectric material Phys. Status Solidi a 205 1173–6
[25] [25] Diko P 2004 Cracking in melt-grown Re-Ba-Cu-O single-grain bulk superconductors Supercond. Sci. Technol. 17 R45–R58
[26] [26] Diko P and Krabbes G 2003 Macro-cracking in melt-grown YBaCuO superconductor induced by surface oxygenation Supercond. Sci. Technol. 16 90–93
[27] [27] Surjadi J U, Feng X B, Zhou W Z and Lu Y 2021 Optimizing film thickness to delay strut fracture in high-entropy alloy composite microlattices Int. J. Extrem. Manuf. 3 025101
[28] [28] ZhangWQ,Ye HT, FengXB,ZhouWZandCaoK 2022 Tailoring mechanical properties of PμSL 3D-printed structures via size effect Int. J. Extrem. Manuf. 4 045201
[29] [29] SunQS,XueZX,ChenY, XiaRD,WangJM,XuS, Zhang J and Yue Y N 2021 Modulation of the thermal transport of micro-structured materials from 3D printing Int. J. Extrem. Manuf. 4 015001
[30] [30] Zhang B Q, Zhang Q Q, He P, Ma Y B, Shen L, Zhang X Y and Zhou Y H 2021 Efficient fabrication of ultralight YBa2Cu3O7-x superconductors with programmable shape and structure Adv. Funct. Mater. 31 2100680
[31] [31] WangXF, SunYH,PengCQ,LuoH,WangRCand Zhang D 2015 Transitional suspensions containing thermosensitive dispersant for three-dimensional printing ACS Appl. Mater. Interfaces 7 26131–6
[32] [32] Deville S, Saiz E, Nalla R K and Tomsia A P 2006 Freezing as a path to build complex composites Science 311 515–8
[33] [33] SunK,WeiTS,AhnBY, SeoJY, DillonSJandLewisJA 2013 3D printing of interdigitated Li-ion microbattery architectures Adv. Mater. 25 4539–43
[34] [34] Bean C P and Schmitt R W 1963 The physics of high-field superconductors: new materials, used in lossless magnets at low temperatures, challenge scientific understanding Science 140 26–35
[35] [35] Bezazi A, Remillat C, Innocenti P and Scarpa F 2008 In-plane mechanical and thermal conductivity properties of a rectangular–hexagonal honeycomb structure Compos. Struct. 84 248–55
[36] [36] Bezazi A, Scarpa F and Remillat C 2005 A novel centresymmetric honeycomb composite structure Compos. Struct. 71 356–64
[37] [37] Innocenti P and Scarpa F 2009 Thermal conductivity properties and heat transfer analysis of multi-re-entrant auxetic honeycomb structures J. Compos. Mater. 43 2419–39
[38] [38] Wu J Y, Chen F, Shen Q and Zhang L M 2011 Effect of thermal conductivity and analytical calculation method of effective thermal conductivity for porous ceramics Adv. Ceram. 32 13–16
[39] [39] Hou X H and Yin G S 2014 Heat transfer performance for a new honeycomb structure J. Hebei Univ. Technol. 43 72–76
[40] [40] Gu S and Evans A G 2001 On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity Int. J. Heat Mass Transfer 44 2163–75
[41] [41] Bruggeman D A G 1935 Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizit.tskonstanten und leitf.higkeiten der mischk.rper aus isotropen substanzen Ann. Phys. 416 665–79
[42] [42] Landauer R 1952 The electrical resistance of binary metallic mixtures J. Appl. Phys. 23 779–91
Get Citation
Copy Citation Text
Yanbin Ma, Baoqiang Zhang, Xingyi Zhang, and You-He Zhou. Controllable rectification on the thermal conductivity of porous YBa2Cu3O7.x superconductors from 3D-printing[J]. International Journal of Extreme Manufacturing, 2023, 5(1): 15001
Received: Mar. 30, 2022
Accepted: --
Published Online: Jul. 26, 2024
The Author Email: Zhang Xingyi (zhangxingyi@lzu.edu.cn)