Journal of the Chinese Ceramic Society, Volume. 52, Issue 2, 463(2024)

Research Progress on High-Temperature High-Entropy Alloy and Ceramic Eutectic Composites with High Density

SHEN Qiang1... WU Xinting1,2, WEI Qinqin1,2,*, ZHANG Jian1 and LUO Guoqiang1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(45)

    [1] [1] ZHANG Yong, ZHOU YunJun, CHEN Guoliang. Physics, 2008, 37(8): 600-605.

    [2] [2] ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys[J]. Prog Mater Sci, 2014, 61: 1-93.

    [3] [3] GEORGE E P, RAABE D, RITCHIE R O. High-entropy alloys[J]. Nat Rev Mater, 2019, 4(8): 515-534.

    [4] [4] LIU D, YU Q, KABRA S, et al. Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 Kelvin[J]. Science, 2022, 378(6623): 978-983.

    [5] [5] YAO Y G, DONG Q, BROZENA A, et al. High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery[J]. Science, 2022, 376(6589): eabn3103.

    [6] [6] SENKOV O N, WILKS G B, MIRACLE D B, et al. Refractory high-entropy alloys[J]. Intermetallics, 2010, 18(9): 1758-1765.

    [7] [7] SENKOV O N, WILKS G B, SCOTT J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys[J]. Intermetallics, 2011, 19(5): 698-706.

    [8] [8] STEPANOV N D, SHAYSULTANOV D G, SALISHCHEV G A, et al. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy[J]. Mater Lett, 2015, 142: 153-155.

    [9] [9] ROGAL ?, KALITA D, LITYNSKA-DOBRZYNSKA L. CoCrFeMnNi high entropy alloy matrix nanocomposite with addition of Al2O3[J]. Intermetallics, 2017, 86: 104-109.

    [10] [10] XU T, CHEN Q J, JI L, et al. BCC/B2 structure and dislocation strengthening behavior in high Ti content TiAlVCrNb high-entropy alloys[J]. J Alloys Compd, 2023, 956: 170179.

    [11] [11] CHEN K, WANG T Y, WANG X F, et al. Effect of submicron SiC particles on the properties of alcocrfeni high entropy alloy coatings[J].Powder Metall Met Ceram, 2020, 59(7-8): 424-433.

    [12] [12] SMITH T M, KANTZOS C A, ZARKEVICH N A, et al. A 3D printable alloy designed for extreme environments[J]. Nature, 2023, 617(7961): 513-518.

    [13] [13] WEI Qinqin. Microstructure and mechanical properties of ReMoNbTaW high entropy alloy and its eutectic composites[D]. Wuhan: Wuhan University of Technology, 2020.

    [14] [14] LUO G Q, JIANG S J, WEI Q Q, et al. Microstructure and mechanical properties of MoNbW(TaC)x composites[J]. Int J Refract Met Hard Mater, 2021, 99: 105574.

    [15] [15] LIU Y, ZHANG Y, ZHANG H, et al. Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites[J]. J Alloys Compd, 2017, 694: 869-876.

    [16] [16] WU S Y, QIAO D X, ZHAO H L, et al. A novel NbTaW0.5(Mo2C)x refractory high-entropy alloy with excellent mechanical properties[J]. J Alloys Compd, 2021, 889: 161800.

    [17] [17] WU S Y, QIAO D X, ZHANG H T, et al. Microstructure and mechanical properties of CxHf0.25NbTaW0.5 refractory high-entropy alloys at room and high temperatures[J]. J Mater Sci Technol, 2022, 97: 229-238.

    [18] [18] HE F, WANG Z J, CHENG P, et al. Designing eutectic high entropy alloys of CoCrFeNiNbx[J]. J Alloys Compd, 2016, 656: 284-289.

    [19] [19] WEI Q Q, LUO G Q, ZHANG J, et al. Designing high entropy alloy-ceramic eutectic composites of MoNbRe0.5TaW(TiC)x with high compressive strength[J]. J Alloys Compd, 2020, 818: 152846.

    [20] [20] GE S F, LIN S F, FU H M, et al. High-temperature mechanical properties and dynamic recrystallization mechanism of in situ silicide-reinforced MoNbTaTiVSi refractory high-entropy alloy composite[J]. Acta Metall Sin Engl Lett, 2022, 35(10): 1617-1630.

    [21] [21] WANG N R, WANG S R, LIU G Q, et al. In situ high-entropy solid solution and ceramic particles co-reinforced Ni-based composites with outstanding strength-ductility synergy and good pitting resistance[J]. Mater Sci Eng A, 2021, 806: 140842.

    [22] [22] GUO N N, WANG L, LUO L S, et al. Microstructure and mechanical properties of in situ MC-carbide particulates-reinforced refractory high-entropy Mo0.5NbHf0.5ZrTi matrix alloy composite[J]. Intermetallics, 2016, 69: 74-77.

    [23] [23] GU Yanling, CHEN Yang, AN Jinhua, et al. Acta Mater Compos Sin, 2023, 40(5): 3047-3059.

    [24] [24] HOU Lili, YAO Yuhong, LIANG Xiaoyu, et al. Rare Met Mater Eng, 2019, 48(1): 111-115.

    [25] [25] YAO Yuhong, LIANG Xiaoyu, JIN Yaohua, et al. Surf Technol, 2020, 49(2): 235-242.

    [26] [26] JIANG D, CUI H Z, ZHAO X F, et al. Synergistic improvement of wear and corrosion resistance of CoCrNiMoCB coatings obtained by laser cladding: Role of Mo concentration[J]. Mater Des, 2022, 219: 110751.

    [27] [27] WEI Q Q, LUO G Q, TU R, et al. High-temperature ultra-strength of dual-phase Re0.5MoNbW(TaC)0.5 high-entropy alloy matrix composite[J]. J Mater Sci Technol, 2021, 84: 1-9.

    [28] [28] GUO N N, WANG L, LUO L S, et al. Microstructure and mechanical properties of refractory high entropy (Mo0.5NbHf0.5ZrTi)BCC/M5Si3 in situ compound[J]. J Alloys Compd, 2016, 660: 197-203.

    [29] [29] WEI Q Q, XU X D, SHEN Q, et al. Metal-carbide eutectics with multiprincipal elements make superrefractory alloys[J]. Sci Adv, 2022, 8(27): eabo2068.

    [30] [30] WEI Q Q, XU X D, LI G M, et al. A carbide-reinforced Re0.5MoNbW(TaC)0.8 eutectic high-entropy composite with outstanding compressive properties[J]. Scr Mater, 2021, 200: 113909.

    [31] [31] GLUDOVATZ B, HOHENWARTER A, CATOOR D, et al. A fracture-resistant high-entropy alloy for cryogenic applications[J]. Science, 2014, 345(6201): 1153-1158.

    [32] [32] HE J Y, WANG H, HUANG H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties[J]. Acta Mater, 2016, 102: 187-196.

    [33] [33] ZHANG L J, YU P F, FAN J T, et al. Investigating the micro and nanomechanical properties of CoCrFeNi-Cx high-entropy alloys containing eutectic carbides[J]. Mater Sci Eng A, 2020, 796: 140065.

    [34] [34] DIVINSKI S V, LUKIANOVA O A, WILDE G, et al. High-entropy alloys: Diffusion[M]. Encyclopedia of Materials: Metals and Alloys. Amsterdam: Elsevier, 2022: 402-416.

    [35] [35] GE Shaofan. Synthesis and properties of Mo-Nb-Ta-Ti-V refractory high-entropy alloy[D]. Hefei: University of Science and Technology of China, 2022.

    [36] [36] ZHANG L K, LU Y P, AMAR A, et al. Designing eutectic high-entropy alloys containing nonmetallic elements[J]. Adv Eng Mater, 2022, 24(11): 2200486.

    [37] [37] JIANG Shijing. Microstructure and mechanical properties of MoNbWTaC system composites[D]. Wuhan: Wuhan University of Technology, 2021.

    [38] [38] ZHANG L K, HUANG R, AMAR A, et al. Evolution of microstructure and mechanical properties of a novel CoCrFeNi2(TiSi)0.7 eutectic high-entropy alloys under different annealing conditions[J]. Adv Eng Mater, 2023, 25(13): 2201659.

    [39] [39] TIAN Chunxu. Microstructure and mechanical properties of Ti2Al0.5-xSixNbV0.5Cr refractory high-entropy alloys[D]. Shenyang: Northeastern University, 2020.

    [40] [40] WANG Yongxing, ZHANG Dongdong, ZHANG Jinyu, et al. Rare Met Mater Eng, 2022, 51(2): 743-751.

    [41] [41] YANG Xiaomeng, AN Zibing, CHEN Yanhui. Mater Rep, 2019, 33(S2): 348-355.

    [42] [42] LUO H, ZOU S W, CHEN Y H, et al. Influence of carbon on the corrosion behaviour of interstitial equiatomic CoCrFeMnNi high-entropy alloys in a chlorinated concrete solution[J]. Corros Sci, 2020, 163: 108287.

    [43] [43] WEI S L, KIM S J, KANG J Y, et al. Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility[J]. Nat Mater, 2020, 19(11): 1175-1181.

    [44] [44] CUI D C, ZHANG Y Y, LIU L X, et al. Oxygen-assisted spinodal structure achieves 1.5 GPa yield strength in a ductile refractory high-entropy alloy[J]. J Mater Sci Technol, 2023, 157: 11-20.

    [45] [45] ZHANG C, YU Q, TANG Y T, et al. Strong and ductile FeNiCoAl- based high-entropy alloys for cryogenic to elevated temperature multifunctional applications[J]. Acta Mater, 2023, 242: 118449.

    Tools

    Get Citation

    Copy Citation Text

    SHEN Qiang, WU Xinting, WEI Qinqin, ZHANG Jian, LUO Guoqiang. Research Progress on High-Temperature High-Entropy Alloy and Ceramic Eutectic Composites with High Density[J]. Journal of the Chinese Ceramic Society, 2024, 52(2): 463

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: May. 15, 2023

    Accepted: --

    Published Online: Aug. 5, 2024

    The Author Email: Qinqin WEI (weiqq@whut.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics