Acta Optica Sinica, Volume. 42, Issue 11, 1134013(2022)

Assessment of Quintuple-Frequency Thomson Scattering on Shenguang-100 kJ Laser Facility

Hang Zhao1, Zhichao Li1, Xin Li2, Yaoyuan Liu1, Tao Gong1, Liang Guo1, Sanwei Li1, Xiaohua Jiang1, Qi Li1, Kaiqiang Pan1, Chaoxin Chen1, Dong Yang1, Yongkun Ding2, and Feng Wang1、*
Author Affiliations
  • 1Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
  • 2Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
  • show less
    References(34)

    [1] Froula D H, Glenzer S H, Luhmann N C et al[M]. Plasma scattering of electromagnetic radiation: theory and measurement techniques(2011).

    [2] Wen S H, Ding Y K[M]. Laser inertial confinement fusion diagnostics(2012).

    [3] Glenzer S H, Alley W E, Estabrook K G et al. Thomson scattering from laser plasmas[J]. Physics of Plasmas, 6, 2117-2128(1999).

    [4] Froula D H, Ross J S, Divol L, ion temperatures et al. 77(10): 10E522[J]. density, plasma wave amplitudes in laser produced plasmas, invited, . Review of Scientific Instruments(2006).

    [5] Ross J S, Glenzer S H, Palastro J P et al. 81(10): 10D523[J]. noncollective regimes in laser produced plasmas, invited, . Review of Scientific Instruments(2010).

    [6] Follett R K, Delettrez J A, Edgell D H, electron plasma waves et al. 87(11): 11E401[J]. invited, . Review of Scientific Instruments(2016).

    [7] Zhao H, Li Z C, Yang D et al. Progress in optical Thomson scattering diagnostics for ICF gas-filled hohlraums[J]. Matter and Radiation at Extremes, 4, 055201(2019).

    [8] Glenzer S H, Back C A, Suter L J et al. Thomson scattering from inertial-confinement-fusion hohlraum plasmas[J]. Physical Review Letters, 79, 1277-1280(1997).

    [9] Rinderknecht H G, Park H S, Ross J S et al. Highly resolved measurements of a developing strong collisional plasma shock[J]. Physical Review Letters, 120, 095001(2018).

    [10] Glenzer S H, Weiland T L, Bower J et al. High-energy 4ω probe laser for laser-plasma experiments at Nova[J]. Review of Scientific Instruments, 70, 1089-1092(1999).

    [11] Bai B, Zheng J, Liu W D et al. Thomson scattering measurement of gold plasmas produced with 0.351 μm laser light[J]. Physics of Plasmas, 8, 4144-4148(2001).

    [12] Wang Z B, Zheng J, Zhao B et al. Thomson scattering from laser-produced gold plasmas in radiation conversion layer[J]. Physics of Plasmas, 12, 082703(2005).

    [13] Li Z C, Zheng J, Jiang X H et al. Interaction of 0.53 μm laser pulse with millimeter-scale plasmas generated by gasbag target[J]. Physics of Plasmas, 19, 062703(2012).

    [14] Gong T, Li Z C, Jiang X H et al. Development of Thomson scattering system on Shenguang-III prototype laser facility[J]. Review of Scientific Instruments, 86, 023501(2015).

    [15] Li P, Jing F, Wu D S et al. Power balance on the SG-III prototype facility[J]. Proceedings of SPIE, 8433, 843317(2012).

    [16] Zheng W G, Wei X F, Zhu Q H et al. Laser performance of the SG-III laser facility[J]. High Power Laser Science and Engineering, 4, e21(2016).

    [17] Yan Y D, Lu W T, Dong X N et al. Design of collective optic system for Thomson scattering measurements on Shenguang-Ⅲ facility[J]. Acta Optica Sinica, 31, 0611002(2011).

    [18] Zhao H, Li Z C, Yang D et al. Implementation of ultraviolet Thomson scattering on SG-III laser facility[J]. Review of Scientific Instruments, 89, 093505(2018).

    [19] Li Z C, Zhao H, Gong T et al. Recent research progress of optical Thomson scattering in laser-driven inertial confinement fusion[J]. High Power Laser and Particle Beams, 32, 092004(2020).

    [20] Chai X X, Li P, Feng B et al. Influence of F number on the fourth-harmonic-generation efficiency of convergent beam and its improvement technologies[J]. Chinese Journal of Lasers, 48, 0908001(2021).

    [21] Ross J S, Divol L, Sorce C et al. Ultraviolet Thomson scattering measurements of the electron and ion features with an energetic 263 nm probe[J]. Journal of Instrumentation, 6, P08004(2011).

    [22] Zhao H. Thomson-scattering studies on plasma conditions in gas-filled hohlraums[D]. Beijing: Tsinghua University, 100-124(2020).

    [23] Liu Y Y, Ding Y K, Zheng J. Improvement in Thomson scattering diagnostic precision via fitting the multiple-wavenumber spectra simultaneously[J]. Review of Scientific Instruments, 90, 083501(2019).

    [24] Tan W Q, Liu Y Y, Li X Y et al. Electron density measurement via dual-angle Thomson scattering diagnosis[J]. Journal of Applied Physics, 129, 043302(2021).

    [25] Froula D H, Davis P, Divol L et al. Measurement of the dispersion of thermal ion-acoustic fluctuations in high-temperature laser plasmas using multiple-wavelength Thomson scattering[J]. Physical Review Letters, 95, 195005(2005).

    [26] Depierreux S, Tassin V, Neuville C et al. Requirements for a 4ω Thomson scattering system on megajoule scale laser facilities[J]. Review of Scientific Instruments, 91, 083508(2020).

    [27] Ross J S, Datte P, Divol L et al. 87(11): 11E510(2016).

    [28] Datte P S, Ross J S, Froula D H et al. 87(11): 11E549(2016).

    [29] Awwal A A S. Alignment of pointing beam in the optical thomson scattering laser at the national ignition facility[J]. Proceedings of SPIE, 11841, 118410I(2021).

    [30] Zheng J Q, Cong Z H, Liu Z J et al. Recent trend of high repetition rate ultrashort laser pulse generation and frequency conversion[J]. Chinese Journal of Lasers, 48, 1201008(2021).

    [31] Wang J, Luo L B. Advances in Ga2O3-based solar-blind ultraviolet photodetectors[J]. Chinese Journal of Lasers, 48, 1100001(2021).

    [32] Wang J Y, Zhang J L, Jiao H F et al. Study on high reflective film in 121.6 nm far ultraviolet[J]. Acta Optica Sinica, 40, 0931001(2020).

    [33] Pei W B. The construction of simulation algorithms for laser fusion[J]. Communications in Computational Physics, 238, 255-270(2007).

    [34] Song P, Zhai C L, Li S G et al. LARED-Integration code for numerical simulation of the whole process of the indirect-drive laser inertial confinement fusion[J]. High Power Laser and Particle Beams, 27, 032007(2015).

    Tools

    Get Citation

    Copy Citation Text

    Hang Zhao, Zhichao Li, Xin Li, Yaoyuan Liu, Tao Gong, Liang Guo, Sanwei Li, Xiaohua Jiang, Qi Li, Kaiqiang Pan, Chaoxin Chen, Dong Yang, Yongkun Ding, Feng Wang. Assessment of Quintuple-Frequency Thomson Scattering on Shenguang-100 kJ Laser Facility[J]. Acta Optica Sinica, 2022, 42(11): 1134013

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: X-Ray Optics

    Received: Feb. 24, 2022

    Accepted: Apr. 15, 2022

    Published Online: Jun. 3, 2022

    The Author Email: Wang Feng (lfrc_wangfeng@163.com)

    DOI:10.3788/AOS202242.1134013

    Topics