Photonics Research, Volume. 10, Issue 6, 1509(2022)

Monolithic GaAs/Si V-groove depletion-type optical phase shifters integrated in a 300 mm Si photonics platform

Younghyun Kim1,2、*, Didit Yudistira1, Bernardette Kunert1, Marina Baryshnikova1, Reynald Alcotte1, Cenk Ibrahim Ozdemir1, Sanghyeon Kim1,3, Sebastien Lardenois1, Peter Verheyen1, Joris Van Campenhout1, and Marianna Pantouvaki1
Author Affiliations
  • 1IMEC, Heverlee B-3001, Belgium
  • 2Current address: Department of Photonics and Nanoelectronics, BK21 FOUR ERICA-ACE Center, Hanyang University, Ansan 15588, Republic of Korea
  • 3Current address: School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
  • show less
    References(31)

    [1] Y. Kim, J.-H. Han, D. Ahn, S. Kim. Heterogeneously-integrated optical phase shifters for next-generation modulators and switches on a silicon photonics platform: a review. Micromachines, 12, 625(2021).

    [2] A. Rahim, A. Hermans, B. Wohlfeil, D. Petousi, B. Kuyken, D. van Thourhout, R. G. Baets. Taking silicon photonics modulators to a higher performance level: state-of-the-art and a review of new technologies. Adv. Photon., 3, 024003(2021).

    [3] C. Xiong, D. M. Gill, J. E. Proesel, J. S. Orcutt, W. Haensch, W. M. J. Green. Monolithic 56 Gb/s silicon photonic pulse-amplitude modulation transmitter. Optica, 3, 1060-1065(2016).

    [4] P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, Y.-K. Chen. Monolithic silicon photonic integrated circuits for compact 100+ Gb/s coherent optical receivers and transmitters. IEEE J. Sel. Top. Quantum Electron., 20, 150-157(2014).

    [5] T. Thiessen, P. Grosse, J. Da Fonseca, P. Billondeau, B. Szelag, C. Jany, J. K. S. Poon, S. Menezo. 30 GHz heterogeneously integrated capacitive InP-on-Si Mach–Zehnder modulators. Opt. Express, 27, 102-109(2019).

    [6] T. Hiraki, T. Aihara, K. Hasebe, K. Takeda, T. Fujii, T. Kakitsuka, T. Tsuchizawa, H. Fukuda, S. Matsuo. Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator. Nat. Photonics, 11, 482-485(2017).

    [7] T. Hiraki, T. Aihara, T. Fujii, K. Takeda, Y. Maeda, T. Kakitsuka, T. Tsuchizawa, S. Matsuo. Integration of a high-efficiency Mach-Zehnder modulator with a DFB laser using membrane InP-based devices on Si photonics platform. Opt. Express, 29, 2431-2441(2021).

    [8] J.-H. Han, F. Boeuf, J. Fujikata, S. Takahashi, S. Takagi, M. Takenaka. Efficient low-loss InGaAsP/Si hybrid MOS optical modulator. Nat. Photonics, 11, 486-490(2017).

    [9] Q. Li, J.-H. Han, C. P. Ho, S. Takagi, M. Takenaka. Ultra-power-efficient 2 × 2 Si Mach-Zehnder interferometer optical switch based on III–V/Si hybrid MOS phase shifter. Opt. Express, 26, 35003-35012(2018).

    [10] Q. Li, C. P. Ho, S. Takagi, M. Takenaka. Optical phase modulators based on reverse-biased III-V/Si hybrid metal-oxide-semiconductor capacitors. IEEE Photon. Technol. Lett., 32, 345-348(2020).

    [11] M. Takenaka, J.-H. Han, F. Boeuf, J.-K. Park, Q. Li, C. P. Ho, D. Lyu, S. Ohno, J. Fujikata, S. Takahashi, S. Takagi. III–V/Si hybrid MOS optical phase shifter for Si photonic integrated circuits. J. Lightwave Technol., 37, 1474-1483(2019).

    [12] B. R. Bennett, R. A. Soref, J. A. Del Alamo. Carrier-induced change in refractive index of InP, GaAs and InGaAsP. IEEE J. Quantum Electron., 26, 113-122(1990).

    [13] N. Waldron, C. Merckling, L. Teugels, P. Ong, S. A. U. Ibrahim, F. Sebaai, A. Pourghaderi, K. Barla, N. Collaert, A. V.-Y. Thean. InGaAs gate-all-around nanowire devices on 300 mm Si substrates. IEEE Electron Device Lett., 35, 1097-1099(2014).

    [14] C. I. Ozdemir, Y. De Koninck, D. Yudistira, N. Kuznetsova, M. Baryshnikova, D. Van Thourhout, B. Kunert, M. Pantouvaki, J. Van Campenhout. Low dark current and high responsivity 1020 nm InGaAs/GaAs nano-ridge waveguide photodetector monolithically integrated on a 300-mm Si wafer. J. Lightwave Technol., 39, 5263-5269(2021).

    [15] Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, D. Van Thourhout. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat. Photonics, 9, 837-842(2015).

    [16] Y. Shi, Z. Wang, J. Van Campenhout, M. Pantouvaki, B. Kunert, D. Van Thourhout. Monolithic InGaAs/GaAs multi-QWs DFB nanoridge laser directly grown on 300 mm Si wafer. Advanced Photonics 2017, ITu2A.2(2017).

    [17] Y. Kim, S.-H. Kim, Y. Ban, S. Lardenois, D. Yudistira, M. Pantouvaki, J. Van Campenhout. Proposal and simulation of a low loss, highly efficient monolithic III–V/Si optical phase shifter. 16th International Conference on Group IV Photonics (GFP), WP29(2019).

    [18] S. Kim, Y. Kim, Y. Ban, M. Pantouvaki, J. Van Campenhout. Simulation study of a monolithic III-V/Si V-groove carrier depletion optical phase shifter. IEEE J. Quantum Electron., 56, 6300208(2020).

    [19] M. Paladugu, C. Merckling, R. Loo, O. Richard, H. Bender, J. Dekoster, W. Vandervorst, M. Caymax, M. Heyns. Site selective integration of III–V materials on Si for nanoscale logic and photonic devices. Cryst. Growth Des., 12, 4696-4702(2012).

    [20] W. Guo, Y. Mols, J. Belz, A. Beyer, K. Volz, A. Schulze, R. Langer, B. Kunert. Anisotropic relaxation behavior of InGaAs/GaAs selectively grown in narrow trenches on (001) Si substrates. J. Appl. Phys., 122, 025303(2017).

    [21] A. Georgakilas, E. Aperathitis, V. Foukaraki, M. Kayambaki, P. Panayotatos. Investigation of the GaAs/Si heterojunction band lineup with capacitance and current versus voltage measurements. Mater. Sci. Eng. B, 44, 383-386(1997).

    [22] G. Wang, G. Y. Zhao, T. Soga, T. Jimbo, M. Umeno. Effects of H plasma passivation on the optical and electrical properties of GaAs-on-Si. Jpn. J. Appl. Phys., 37, L1280-L1282(1998).

    [23] G. Wang, T. Ogawa, T. Soga, T. Jimbo, M. Umeno. Detailed study of H2 plasma passivation effects on GaAs/Si solar cell. Sol. Energy Mater. Sol. Cells, 66, 599-605(2001).

    [24] K. C. Hsieh, M. S. Feng, G. E. Stillman, N. Holonyak, C. R. Ito, M. Feng. Hydrogenation and subsequent hydrogen annealing of GaAs on Si. Appl. Phys. Lett., 54, 341-343(1989).

    [25] S. J. Pearton, C. S. Wu, M. Stavola, F. Ren, J. Lopata, W. C. Dautremont-Smith, S. M. Vernon, V. E. Haven. Hydrogenation of GaAs on Si: effects on diode reverse leakage current. Appl. Phys. Lett., 51, 496-498(1987).

    [26] V. Swaminathan. Defects in GaAs. Bull. Mater. Sci., 4, 403-442(1982).

    [27] M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, A. L. Lentine. Low-voltage, compact, depletion-mode, silicon Mach–Zehnder modulator. IEEE J. Sel. Top. Quantum Electron., 16, 159-164(2010).

    [28] Y. Kim, T. Jin, Y. Bae. A comparative simulation study on lateral and L-shape pn junction phase shifters for single-drive 50 Gbps lumped Mach-Zehnder modulators. Jpn. J. Appl. Phys., 60, 052002(2021).

    [29] E. Peiner, A. Guttzeit, H.-H. Wehmann. The effect of threading disclocations on optical absorption and electron scattering in strongly mismatched heteroepitaxial III–V compound semiconductors on silicon. J. Phys. Condens. Matter, 14, 13195-13201(2002).

    [30] F. Boeuf, J.-H. Han, S. Takagi, M. Takenaka. Benchmarking Si, SiGe, and III–V/Si hybrid SIS optical modulators for datacenter applications. J. Lightwave Technol., 35, 4047-4055(2017).

    [31] D. A. B. Miller. Energy consumption in optical modulators for interconnects. Opt. Express, 20, A293-A308(2012).

    Tools

    Get Citation

    Copy Citation Text

    Younghyun Kim, Didit Yudistira, Bernardette Kunert, Marina Baryshnikova, Reynald Alcotte, Cenk Ibrahim Ozdemir, Sanghyeon Kim, Sebastien Lardenois, Peter Verheyen, Joris Van Campenhout, Marianna Pantouvaki. Monolithic GaAs/Si V-groove depletion-type optical phase shifters integrated in a 300 mm Si photonics platform[J]. Photonics Research, 2022, 10(6): 1509

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Silicon Photonics

    Received: Dec. 21, 2021

    Accepted: Mar. 30, 2022

    Published Online: May. 25, 2022

    The Author Email: Younghyun Kim (younghyunkim@hanyang.ac.kr)

    DOI:10.1364/PRJ.451821

    Topics