Optics and Precision Engineering, Volume. 32, Issue 22, 3366(2024)

Design of partial overlap point cloud registration network driven by overlap score and matching matrix

Jianbing YI1...2,*, Xin CHEN1,2, Feng CAO1,2, Shuxin YANG1,2 and Jingyong WANG3 |Show fewer author(s)
Author Affiliations
  • 1School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou34000, China
  • 2Jiangxi Province Key Laboratory of Multidimensional Intelligent Perception and Control, Ganzhou341000, China
  • 3Longnan Dingtai electronic Technology Co., Ltd., Ganzhou41000, China
  • show less
    References(45)

    [1] 王耀南, 江一鸣, 姜娇. 机器人感知与控制关键技术及其智能制造应用. 自动化学报, 49, 494-513(2023).

         Y N WANG, Y M JIANG, J JIANG et al. Key technologies of robot perception and control and its intelligent manufacturing applications. Acta Automatica Sinica, 49, 494-513(2023).

    [2] Y W YU, K WANG, L Q DU et al. Matching point pair optimization registration method for point cloud model. Opt. Precision Eng., 31, 503-516(2023).

         余永维, 王康, 杜柳青. 点云模型的匹配点对优化配准. 光学 精密工程, 31, 503-516(2023).

    [3] 李博洋, 刘思健, 崔明月. 基于最小回环检测的多车协同SLAM框架. 电子学报, 49, 2241-2250(2021).

         B Y LI, S J LIU, M Y CUI et al. Multi-vehicle collaborative SLAM framework for minimum loop detection. Acta Electronica Sinica, 49, 2241-2250(2021).

    [4] R Q CHARLES, S HAO, K C MO et al. PointNet: Deep Learning on Point Sets for 3d Classification and Segmentation, 77-85(2017).

    [5] Z J YEW, G H LEE. RPM-net: Robust Point Matching Using Learned Features, 11821-11830(2020).

    [6] J H LI, C H ZHANG, Z Y XU et al. Iterative distance-aware similarity matrix convolution with mutual-supervised point elimination for efficient point cloud registration, 378-394(2020).

    [7] S Y HUANG, Z GOJCIC, M USVYATSOV et al. PREDATOR: registration of 3d point clouds with low overlap, 4265-4274(2021).

    [9] H XU, S C LIU, G F WANG et al. OMNet: learning overlapping mask for partial-to-partial point cloud registration, 3112-3121(2021).

    [10] S K LI, Y YE, J Y LIU et al. VPRNet: virtual points registration network for partial-to-partial point cloud registration. Remote Sensing, 14, 2559(2022).

    [11] Z L CHEN, H H CHEN, L N GONG et al. UTOPIC: uncertainty-aware overlap prediction network for partial point cloud registration. Computer Graphics Forum, 41, 87-98(2022).

    [12] B Y TAN, H X QIN, X X ZHANG et al. Using multi-level consistency learning for partial-to-partial point cloud registration. IEEE Transactions on Visualization and Computer Graphics, 30, 4881-4894(2024).

    [13] Y WU, Q L YAO, X L FAN et al. PANet: a point-attention based multi-scale feature fusion network for point cloud registration. IEEE Transactions on Instrumentation and Measurement, 72, 2512913(2023).

    [14] P KADAM, M ZHANG, S LIU et al. R-PointHop: a green, accurate, and unsupervised point cloud registration method. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 31, 2710-2725(2022).

    [15] P J BESL, N D MCKAY. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 239-256(1992).

    [16] Q Y ZHOU, J PARK, V KOLTUN. Fast global registration, 766-782(2016).

    [17] W T YUAN, B ECKART, K KIM et al. DeepGMR: learning latent gaussian mixture models for registration, 733-750(2020).

    [18] Y CHEN, Y WANG, J L LI et al. A partial-to-partial point cloud registration method based on geometric attention network. Journal of Sensors, 2023, 3427758(2023).

    [19] H B ZHANG, L Q HAI, H R SUN et al. GTGMM: geometry transformer and Gaussian Mixture Models for robust point cloud registration. Multimedia Tools and Applications, 83, 79757-79783(2024).

    [20] Z J YEW, G H LEE. REGTR: End-to-end point cloud correspondences with transformers, 6667-6676(2022).

    [21] G F MEI, H TANG, X S HUANG et al. Unsupervised deep probabilistic approach for partial point cloud registration, 13611-13620(2023).

    [22] J X WEI, L CHENG, Z M HU et al. HPNet: high precision point cloud registration using feature pyramid and hybrid position encoding. Computers & Graphics, 119, 103896(2024).

    [23] D BAUER, T PATTEN, M VINCZE. Reagent: point cloud registration using imitation and reinforcement learning, 14581-14589(2021).

    [24] Z L SUN, Y X ZHANG, X CHEN. Partial point cloud registration based on dilated graph convolution and outlier filtering. Computer Engineering and Applications, 58, 186-194(2022).

         孙战里, 张玉欣, 陈霞. 基于膨胀图卷积与离群点过滤的残缺点云配准. 计算机工程与应用, 58, 186-194(2022).

    [26] Y X ZHANG, Z L SUN, Z G ZENG et al. Partial point cloud registration with deep local feature. IEEE Transactions on Artificial Intelligence, 4, 1317-1327(2023).

    [27] Y N SONG, W M SHEN, K K PENG. A novel partial point cloud registration method based on graph attention network. The Visual Computer, 39, 1109-1120(2023).

    [28] J L YANG, H D LI, D CAMPBELL et al. Go-ICP: a globally optimal solution to 3D ICP point-set registration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38, 2241-2254(2016).

    [29] Y WANG, J SOLOMON. Deep Closest Point: Learning Representations for Point Cloud Registration, 3522-3531(2019).

    [30] J Q YANG, S K ZHANG, S C FAN et al. Survey on multi-view point cloud registration algorithm. Journal of Huazhong University of Science and Technology (Natural Science Edition), 50, 16-34, 43(2022).

         杨佳琪, 张世坤, 范世超. 多视图点云配准算法综述. 华中科技大学学报(自然科学版), 50, 16-34, 43(2022).

    [31] H Y WANG, X LIU, W KANG et al. Multi-features guidance network for partial-to-partial point cloud registration. Neural Computing and Applications, 34, 1623-1634(2022).

    [32] H XU, N J YE, G H LIU et al. FINet: dual branches feature interaction for partial-to-partial point cloud registration. Proceedings of the AAAI Conference on Artificial Intelligence, 36, 2848-2856(2022).

    [33] G F MEI, F POIESI, C SALTORI et al. Overlap-guided gaussian mixture models for point cloud registration, 4500-4509(2023).

    [34] K X FU, J Z LUO, X Y LUO et al. Robust point cloud registration framework based on deep graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 6183-6195(2023).

    [35] Z QIN, H YU, C J WANG et al. GeoTransformer: fast and robust point cloud registration with geometric transformer. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 9806-9821(2023).

    [36] L P WANG, B YANG, H L YE et al. Two-view point cloud registration network: feature and geometry. Applied Intelligence, 54, 3135-3151(2024).

    [37] X H MENG, L ZHU, H L YE et al. A new method for two-stage partial-to-partial 3D point cloud registration: multi-level interaction perception. International Journal of Machine Learning and Cybernetics, 14, 3765-3781(2023).

    [38] Y AOKI, H GOFORTH, R A SRIVATSAN et al. PointNetLK: Robust & Efficient point cloud registration using PointNet, 7156-7165(2019).

    [39] Y X ZHANG, Z L SUN, Z G ZENG et al. Point cloud registration using multiattention mechanism and deep hybrid features. IEEE Intelligent Systems, 38, 58-68(2023).

    Tools

    Get Citation

    Copy Citation Text

    Jianbing YI, Xin CHEN, Feng CAO, Shuxin YANG, Jingyong WANG. Design of partial overlap point cloud registration network driven by overlap score and matching matrix[J]. Optics and Precision Engineering, 2024, 32(22): 3366

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 3, 2024

    Accepted: --

    Published Online: Mar. 10, 2025

    The Author Email: YI Jianbing (yijianbing8@jxust.edu.cn)

    DOI:10.37188/OPE.20243222.3366

    Topics