Journal of the Chinese Ceramic Society, Volume. 50, Issue 7, 1945(2022)
Performance of Passive NOx Adsorbent Pd/ZSM-5
[1] [1] HAN L, CAI S X, GAO M, et al. Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects[J]. Chem Rev, 2019, 119(19): 10916-10976.
[3] [3] WANG D, JANGJOU Y, LIU Y, et al. A comparison of hydrothermal aging effects on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts[J]. Appl Catal B Environ, 2015, 165: 438-445.
[4] [4] FICKEL D W, D’ADDIO E, LAUTERBACH J A, et al. The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites[J]. Appl Catal B Environ, 2011, 102(3/4): 441-448.
[5] [5] MISRA C, RUEHL C, COLLINS J, et al. In-use NOx emissions from diesel and liquefied natural gas refuse trucks equipped with SCR and TWC, respectively[J]. Environ Sci Technol, 2017, 51(12): 6981- 6989.
[6] [6] KHIVANTSEV K, JAEGERS N R, KOVARIK L, et al. The superior hydrothermal stability of Pd/SSZ-39 in low temperature passive NOx adsorption (PNA) and methane combustion[J]. Appl Catal B Environ, 2021, 280: 119449.
[7] [7] WANG A, LINDGREN K, DI M, et al. Insight into hydrothermal aging effect on Pd sites over Pd/LTA and Pd/SSZ-13 as PNA and CO oxidation monolith catalysts[J]. Appl Catal B Environ, 2020, 278(5): 119315.
[8] [8] SHAN Y, SUN Y, LI Y, et al. Passive NO adsorption on hydrothermally aged Pd-based small-pore zeolites[J]. Top Catal, 2020, 63: 944-953.
[9] [9] KHIVANTSEV K, WEI X, KOVARIK L, et al. Palladium/ferrierite versus palladium/SSZ-13 passive NOx adsorbers: adsorbate-controlled location of atomically dispersed palladium(Ⅱ) in ferrierite determines high activity and stability[J]. Angew Chem Int Edit, 2022, 61(3), e202107554.
[10] [10] KIM Y, HWANG S, LEE J, et al. Comparison of NOx adsorption/ desorption behaviors over Pd/CeO2 and Pd/SSZ-13 as passive NOx adsorbers for Cold start application[J]. Emiss Control Sci Technol, 2019, 5(2): 172-182.
[11] [11] JIANG Q, WANG C, SHEN M, et al. The first non-precious metal passive NOx adsorber for cold-start applications[J]. Catal Commun, 2019, 125(10): 103-107.
[12] [12] CHENHEN H Y, COLLIER J E, LIU D, et al. Low temperature NO storage of zeolite supported Pd for low temperature diesel engine emission control[J]. Catal Letters, 2016, 146(9): 1706-1711.
[13] [13] CHANG X, LU G, GUO Y, et al. A high effective adsorbent of NOx: Preparation, characterization and performance of Ca-beta zeolite[J]. Microporous Mesoporous Mater , 2013, 165(1): 113-120.
[14] [14] ZHANG B, SHEN M, WANG J, et al. Investigation of various Pd species in Pd/BEA for cold start application[J]. Catalysts, 2019, 9(3): 247.
[15] [15] ZHENG Y, KOVARIK L, ENGELHARD M H, et al. Low- temperature Pd/zeolite passive NOx adsorbers: Structure, performance, and adsorption chemistry[J]. J Phys Chem C, 2017, 121(29): 15793-15803.
[16] [16] KHIVANTSEV K, GAO F, KOVARIK L, et al. Molecular level understanding of how oxygen and carbon monoxide improve NOx storage in palladium/SSZ-13 passive NOx adsorbers: The role of NO+ and Pd(II)(CO)(NO) species[J]. J Phys Chem C, 2018, 122(20): 10820-10827.
[17] [17] RYOU Y, LEE J, CHO S J, et al. Activation of Pd/SSZ-13 catalyst by hydrothermal aging treatment in passive NO adsorption performance at low temperature for cold start application[J]. Appl Catal B Environ, 2017, 212(5): 140-149.
[19] [19] AMBAST M, KARINSHAK K, RAHMAN B M M, et al. Passive NOx adsorption on Pd/H-ZSM-5: Experiments and modeling[J]. Appl Catal B Environ, 2020, 269(15): 118802.
[20] [20] GUPTA A, KANG S B, HAROLD M P. NOx uptake and release on Pd/SSZ-13: Impact of Feed composition and temperature[J]. Catal Today, 2021, 360: 411-425.
[21] [21] GU Y T, MAJUMDAR S S, PIHL J A, et al. Investigation of NO adsorption and desorption phenomena on a Pd/ZSM-5 passive NOx adsorber[J]. Appl Catal B Environ, 2021, 298: 120561.
[22] [22] LOBREE L J, AYLOR A W, REIMER J A, et al. NO reduction by CH4 in the presence of O2 over Pd-H-ZSM-5[J]. J Catal, 1999, 181(2): 189-204.
[23] [23] DESCORME C, GELIN P, PRIMET M, et al. Infrared study of nitrogen monoxide adsorption on palladium ion-exchanged ZSM-5 catalysts[J]. Catal Letters, 1996, 41(3): 133-138.
[24] [24] SALAVATIFARD T, LOBO R F, GRABOW L C. Linking low and high temperature NO oxidation mechanisms over Brnsted acidic chabazite to dynamic changes of the active site[J]. J Catal, 2020, 389: 195-206.
[25] [25] AYLOR A W, LOBREE L J, REIMER J A, et al. Investigations of the dispersion of Pd in H-ZSM-5[J]. J Catal, 1997, 172(2): 453-462.
[26] [26] CASTOLDI L, MATARRESE R, MORANDI S, et al. Low- temperature Pd/FER NOx adsorbers: Operando FTIR spectroscopy and performance analysis[J]. Catal Today, 2021, 360: 317-325.
[27] [27] KYRIAKIDOU El A, LEE J, CHOI J S, et al. A comparative study of silver and palladium-exchanged zeolites in propylene and nitrogen oxide adsorption and desorption for cold-start applications[J]. Catal Today, 2021, 360: 220-233.
[28] [28] KIM J H, KATADA N, IGI H. Determination of the acidic properties of zeolite by theoretical analysis of temperature-programmed desorption of ammonia based on adsorption equilibrium[J]. J Phys Chem B, 1997, 101(31): 5969-5977.
[29] [29] KATADA N, IGI H, MIYAMOTO T. Measurements of acid properties of zeolites by new techniques of temperature-programmed desorption of ammonia[J]. Catal Surv from Asia, 1997, 1(2): 215-226..
[30] [30] BARTHOS R, LONYI F, ONYESTYAK G, et al. An IR, FR, and TPD study on the acidity of H-ZSM-5, sulfated zirconia, and sulfated zirconia-titania using ammonia as the probe molecule[J]. J Phys Chem B, 2015, 104(31): 7311-7319.
[31] [31] LIM J B, JO D, HONG S B. Palladium-exchanged small-pore zeolites with different cage systems as methane combustion catalysts[J]. Appl Catal B, 2017, 219: 155-162.
[32] [32] YU Q, CHEN X, BHAT A, et al. Activation of passive NOx adsorbers by pretreatment with reaction gas mixture[J]. Chem Eng J, 2020, 399: 125727.
Get Citation
Copy Citation Text
PAN Rouxing, YU Qingjun, YI Honghong, GAO Fengyu, MENG Xianzheng, LIU Yuanyuan, TANG Xiaolong. Performance of Passive NOx Adsorbent Pd/ZSM-5[J]. Journal of the Chinese Ceramic Society, 2022, 50(7): 1945
Category:
Received: Nov. 25, 2021
Accepted: --
Published Online: Dec. 6, 2022
The Author Email: Rouxing PAN (1159385056@qq.com)
CSTR:32186.14.