Laser & Optoelectronics Progress, Volume. 61, Issue 6, 0618006(2024)

Photoacoustic Microscopy Imaging for Advanced Biomedical Applications (Invited)

Haigang Ma1,2,3、*, Jiahui Wu1,2,3, Yahui Zhu1,2,3, Xiang Wei1,2,3, Yinshi Yu1,2,3, Shili Ren1,2,3, Qian Chen1,2,3, and Chao Zuo1,2,3、**
Author Affiliations
  • 1Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
  • 2Jiangsu Key Laboratory of Spectral Imaging and Intelligence Sense, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
  • 3Smart Computational Imaging Research Institute (SCIRI), Nanjing University of Science and Technology, Nanjing 210019, Jiangsu, China
  • show less
    References(146)

    [1] Zhang T, Tao C, Liu X J. Progress of tissue microstructure classification from photoacoustic imaging[J]. Journal of Applied Acoustics, 40, 11-21(2021).

    [2] Lee C, Jeon M, Jeon M Y et al. In vitro photoacoustic measurement of hemoglobin oxygen saturation using a single pulsed broadband supercontinuum laser source[J]. Applied Optics, 53, 3884-3889(2014).

    [3] Mallidi S, Luke G P, Emelianov S. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance[J]. Trends in Biotechnology, 29, 213-221(2011).

    [4] Jin Y Y, Yin Y G, Li C Y et al. Non-invasive monitoring of human health by photoacoustic spectroscopy[J]. Sensors, 22, 1155(2022).

    [5] Horton N G, Wang K, Kobat D et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain[J]. Nature Photonics, 7, 205-209(2013).

    [6] Errico C, Pierre J, Pezet S et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging[J]. Nature, 527, 499-502(2015).

    [7] Zhu X Y, Huang Q, DiSpirito A et al. Real-time whole-brain imaging of hemodynamics and oxygenation at micro-vessel resolution with ultrafast wide-field photoacoustic microscopy[J]. Light: Science & Applications, 11, 138(2022).

    [8] Wang L V. Tutorial on photoacoustic microscopy and computed tomography[J]. IEEE Journal of Selected Topics in Quantum Electronics, 14, 171-179(2008).

    [9] Zhang W Y, Ma H G, Cheng Z W et al. High-speed dual-view photoacoustic imaging pen[J]. Optics Letters, 45, 1599-1602(2020).

    [10] Yao J J, Wang L V. Photoacoustic microscopy[J]. Laser & Photonics Reviews, 7, 758-778(2013).

    [11] Bell A G. On the production and reproduction of sound by light[J]. American Journal of Science, 3, 305-324(1880).

    [12] Feng T, Ge Y X, Xie Y J et al. Detection of collagen by multi-wavelength photoacoustic analysis as a biomarker for bone health assessment[J]. Photoacoustics, 24, 100296(2021).

    [13] Ma H G, Cheng Z W, Wang Z Y et al. Fast controllable confocal focus photoacoustic microscopy using a synchronous zoom opto-sono objective[J]. Optics Letters, 44, 1880-1883(2019).

    [14] Liu C, Chen J B, Zhang Y C et al. Five-wavelength optical-resolution photoacoustic microscopy of blood and lymphatic vessels[J]. Advanced Photonics, 3, 016002(2021).

    [15] Xu X, Liu H L, Wang L V. Time-reversed ultrasonically encoded optical focusing into scattering media[J]. Nature Photonics, 5, 154-157(2011).

    [16] Zhang X, Ding Q N, Qian X Q et al. Reflection-mode optical-resolution photoacoustic microscopy with high detection sensitivity by using a perforated acoustic mirror[J]. Applied Physics Letters, 113, 183706(2018).

    [17] Zhao Y, Yang S H, Chen C G et al. Simultaneous optical absorption and viscoelasticity imaging based on photoacoustic lock-in measurement[J]. Optics Letters, 39, 2565-2568(2014).

    [18] Shi J H, Wong T T W, He Y et al. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy[J]. Nature Photonics, 13, 609-615(2019).

    [19] Wang L V, Yao J J. A practical guide to photoacoustic tomography in the life sciences[J]. Nature Methods, 13, 627-638(2016).

    [20] Maslov K, Stoica G, Wang L V. In vivo dark-field reflection-mode photoacoustic microscopy[J]. Optics Letters, 30, 625-627(2005).

    [21] Ge H, Yang M, Ma C et al. Breaking the barriers: advances in acoustic functional materials[J]. National Science Review, 5, 159-182(2018).

    [22] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 85, 3966-3969(2000).

    [23] Fang N, Lee H, Sun C et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 308, 534-537(2005).

    [24] Zhang X, Liu Z W. Superlenses to overcome the diffraction limit[J]. Nature Materials, 7, 435-441(2008).

    [25] Kaina N, Lemoult F, Fink M et al. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials[J]. Nature, 525, 77-81(2015).

    [26] Zhang S, Yin L L, Fang N. Focusing ultrasound with an acoustic metamaterial network[J]. Physical Review Letters, 102, 194301(2009).

    [27] Park J J, Park C M, Lee K J B et al. Acoustic superlens using membrane-based metamaterials[J]. Applied Physics Letters, 106, 051901(2015).

    [28] Cao R, Zhao J J, Li L et al. Optical-resolution photoacoustic microscopy with a needle-shaped beam[J]. Nature Photonics, 17, 89-95(2023).

    [29] Zhang C, Maslov K, Wang L V. Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo[J]. Optics Letters, 35, 3195-3197(2010).

    [30] Jeon S, Song H B, Kim J et al. In vivo photoacoustic imaging of anterior ocular vasculature: a random sample consensus approach[J]. Scientific Reports, 7, 4318(2017).

    [31] Song W, Zheng W, Liu R M et al. Reflection-mode in vivo photoacoustic microscopy with subwavelength lateral resolution[J]. Biomedical Optics Express, 5, 4235-4241(2014).

    [32] Shi J H, Wang L D, Noordam C et al. Bessel-beam Grueneisen relaxation photoacoustic microscopy with extended depth of field[J]. Journal of Biomedical Optics, 20, 116002(2015).

    [33] Jiang B W, Yang X Q, Luo Q M. Reflection-mode Bessel-beam photoacoustic microscopy for in vivo imaging of cerebral capillaries[J]. Optics Express, 24, 20167-20176(2016).

    [34] Durnin J, Eberly J H, Miceli J J. Comparison of Bessel and Gaussian beams[J]. Optics Letters, 13, 79-80(1988).

    [35] Lapointe M R. Review of non-diffracting Bessel beam experiments[J]. Optics & Laser Technology, 24, 315-321(1992).

    [36] Kim C, Park S J, Kim J et al. Objective-free optical-resolution photoacoustic microscopy[J]. Journal of Biomedical Optics, 18, 010501(2012).

    [37] Park B, Lee H, Jeon S et al. Reflection-mode switchable subwavelength Bessel-beam and Gaussian-beam photoacoustic microscopy in vivo[J]. Journal of Biophotonics, 12, e201800215(2019).

    [38] Hu Y C, Chen Z J, Xiang L Z et al. Extended depth-of-field all-optical photoacoustic microscopy with a dual non-diffracting Bessel beam[J]. Optics Letters, 44, 1634-1637(2019).

    [39] Li B B, Qin H, Yang S H et al. In vivo fast variable focus photoacoustic microscopy using an electrically tunable lens[J]. Optics Express, 22, 20130-20137(2014).

    [40] Yang X Q, Jiang B W, Song X L et al. Fast axial-scanning photoacoustic microscopy using tunable acoustic gradient lens[J]. Optics Express, 25, 7349-7357(2017).

    [41] Ma H G, Yang S H, Cheng Z W et al. Photoacoustic confocal dermoscope with a waterless coupling and impedance matching opto-sono probe[J]. Optics Letters, 42, 2342-2345(2017).

    [42] Ma H G, Cheng Z W, Wang Z Y et al. Quantitative and anatomical imaging of dermal angiopathy by noninvasive photoacoustic microscopic biopsy[J]. Biomedical Optics Express, 12, 6300-6316(2021).

    [43] Vellekoop I M, Mosk A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters, 32, 2309-2311(2007).

    [44] Horstmeyer R, Ruan H W, Yang C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue[J]. Nature Photonics, 9, 563-571(2015).

    [45] Conkey D B, Brown A N, Caravaca-Aguirre A M et al. Genetic algorithm optimization for focusing through turbid media in noisy environments[J]. Optics Express, 20, 4840-4849(2012).

    [46] Wu Y L, Zhang X D, Yan H M. Focusing light through scattering media using the harmony search algorithm for phase optimization of wavefront shaping[J]. Optik, 158, 558-564(2018).

    [47] Fayyaz Z, Mohammadian N, Salimi F et al. Simulated annealing optimization in wavefront shaping controlled transmission[J]. Applied Optics, 57, 6233-6242(2018).

    [48] Fang L J, Zhang X C, Zuo H Y et al. Focusing light through random scattering media by four-element division algorithm[J]. Optics Communications, 407, 301-310(2018).

    [49] Fang L J, Zuo H Y, Yang Z G et al. Particle swarm optimization to focus coherent light through disordered media[J]. Applied Physics B, 124, 1-9(2018).

    [50] Wu Z H, Luo J W, Feng Y H et al. Controlling 1550-nm light through a multimode fiber using a Hadamard encoding algorithm[J]. Optics Express, 27, 5570-5580(2019).

    [51] Wang Z Q, Zhao Q, Yu P P et al. Bat algorithm-enabled binary optimization for scattered light focusing[J]. Applied Physics Express, 12, 102002(2019).

    [52] Woo C M, Zhao Q, Zhong T T et al. Optimal efficiency of focusing diffused light through scattering media with iterative wavefront shaping[J]. APL Photonics, 7, 046109(2022).

    [53] Yang J M, He Q Z, Liu L X et al. Anti-scattering light focusing by fast wavefront shaping based on multi-pixel encoded digital-micromirror device[J]. Light: Science & Applications, 10, 149(2021).

    [54] Cheng Z T, Wang L V. Focusing light into scattering media with ultrasound-induced field perturbation[J]. Light: Science & Applications, 10, 159(2021).

    [55] Vellekoop I M, Mosk A P. Phase control algorithms for focusing light through turbid media[J]. Optics Communications, 281, 3071-3080(2008).

    [56] Feng Q, Zhang B, Liu Z P et al. Research on intelligent algorithms for amplitude optimization of wavefront shaping[J]. Applied Optics, 56, 3240-3244(2017).

    [58] Vellekoop I M, Cui M, Yang C. Digital optical phase conjugation of fluorescence in turbid tissue[J]. Applied Physics Letters, 101, 081108(2012).

    [59] Tao X D, Fernandez B, Azucena O et al. Adaptive optics confocal microscopy using direct wavefront sensing[J]. Optics Letters, 36, 1062-1064(2011).

    [60] Gao R K, Xu Z Q, Song L et al. Breaking acoustic limit of optical focusing using photoacoustic-guided wavefront shaping[J]. Laser & Photonics Reviews, 15, 2000594(2021).

    [61] Yu Z P, Li H H, Lai P X. Wavefront shaping and its application to enhance photoacoustic imaging[J]. Applied Sciences, 7, 1320(2017).

    [62] Lü X J. Research on photoacoustic wave pre-shaping microscopic imaging based on superpixel method and DMD[D], 9-11(2020).

    [63] Kong F T, Silverman R H, Liu L P et al. Photoacoustic-guided convergence of light through optically diffusive media[J]. Optics Letters, 36, 2053-2055(2011).

    [64] Lai P X, Wang L D, Tay J W et al. Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media[J]. Nature Photonics, 9, 126-132(2015).

    [65] Bossy E, Gigan S. Photoacoustics with coherent light[J]. Photoacoustics, 4, 22-35(2016).

    [66] Lee B H, Kim Y H, Park K S et al. Interferometric fiber optic sensors[J]. Sensors, 12, 2467-2486(2012).

    [67] Yin X L, Shen Y D, Su D et al. High-spatial-resolution ultrasonic sensor using a fiber-optic Fabry-Perot interferometer[J]. Optics Communications, 453, 124422(2019).

    [68] Yang W, Zhang C L, Zeng J Q et al. Ultrasonic signal detection based on Fabry-Perot cavity sensor[J]. Visual Computing for Industry, Biomedicine, and Art, 4, 1-6(2021).

    [69] Ma J, Zhao J, Chen H W et al. Transparent microfiber Fabry-Perot ultrasound sensor with needle-shaped focus for multiscale photoacoustic imaging[J]. Photoacoustics, 30, 100482(2023).

    [70] Shung K K, Cannata J M, Zhou Q F. Piezoelectric materials for high frequency medical imaging applications: a review[J]. Journal of Electroceramics, 19, 141-147(2007).

    [71] Dangi A, Cheng C Y, Agrawal S et al. A photoacoustic imaging device using piezoelectric micromachined ultrasound transducers (PMUTs)[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67, 801-809(2020).

    [72] Ke Q Q, Liew W H, Tao H et al. KNNS-BNZH lead-free 1‒3 piezoelectric composite for ultrasonic and photoacoustic imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 66, 1395-1401(2019).

    [73] Wang H R, Chen Z F, Yang H et al. A ceramic PZT-based PMUT array for endoscopic photoacoustic imaging[J]. Journal of Microelectromechanical Systems, 29, 1038-1043(2020).

    [74] Wang Z Y, Yang F, Ma H G et al. Photoacoustic and ultrasound (PAUS) dermoscope with high sensitivity and penetration depth by using a bimorph transducer[J]. Journal of Biophotonics, 13, e202000145(2020).

    [75] Chen S L, Guo L J, Wang X D. All-optical photoacoustic microscopy[J]. Photoacoustics, 3, 143-150(2015).

    [76] Ding Z Q, Sun J L, Li C H et al. Broadband ultrasound detection using silicon micro-ring resonators[J]. Journal of Lightwave Technology, 41, 1906-1910(2023).

    [77] Chu X X, Cui J G, Zhu M et al. Design of ultra-high sensitivity slot micro-ring resonator acoustic sensor[J]. Fiber and Integrated Optics, 41, 83-95(2022).

    [78] Dong B Q, Chen S Y, Zhang Z et al. Photoacoustic probe using a microring resonator ultrasonic sensor for endoscopic applications[J]. Optics Letters, 39, 4372-4375(2014).

    [79] Li H, Dong B Q, Zhang X A et al. Disposable ultrasound-sensing chronic cranial window by soft nanoimprinting lithography[J]. Nature Communications, 10, 4277(2019).

    [80] Wong L L P, Chen A I, Logan A S et al. An FPGA-based ultrasound imaging system using capacitive micromachined ultrasonic transducers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59, 1513-1520(2012).

    [81] Ilkhechi A K, Ceroici C, Li Z H et al. Transparent capacitive micromachined ultrasonic transducer (CMUT) arrays for real-time photoacoustic applications[J]. Optics Express, 28, 13750-13760(2020).

    [82] Choi W Y, Kwon S W, Kim Y H et al. Single-shot near-field volumetric imaging system for optical ultrasound and photoacoustics using capacitive micromachined ultrasonic transducer without transmission mode[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 67, 1151-1158(2020).

    [83] Jeon S, Park J, Kim C. Multiple direction synthetic aperture focusing technique for acoustic-resolution photoacoustic microscopy[J]. Proceedings of SPIE, 10878, 108781T(2019).

    [84] Thomas A, Paul S, Mulani S et al. Interference-corrected synthetic aperture focusing technique for photoacoustic microscopy[J]. IEEE Sensors Letters, 7, 6004104(2023).

    [85] Cai D, Li Z F, Li Y et al. Photoacoustic microscopy in vivo using synthetic-aperture focusing technique combined with three-dimensional deconvolution[J]. Optics Express, 25, 1421-1434(2017).

    [86] Feng F, Liang S Q, Chen S L. Image enhancement in acoustic-resolution photoacoustic microscopy enabled by a novel directional algorithm[J]. Biomedical Optics Express, 13, 1026-1044(2022).

    [87] Jeon S, Kim J, Lee D et al. Review on practical photoacoustic microscopy[J]. Photoacoustics, 15, 100141(2019).

    [88] Choi W, Park B, Choi S et al. Recent advances in contrast-enhanced photoacoustic imaging: overcoming the physical and practical challenges[J]. Chemical Reviews, 123, 7379-7419(2023).

    [89] Gröhl J, Schellenberg M, Dreher K et al. Deep learning for biomedical photoacoustic imaging: a review[J]. Photoacoustics, 22, 100241(2021).

    [90] Goodfellow I, Bengio Y, Courville A[M]. Deep learning(2016).

    [91] Huang Q H, Tian H Z, Jia L Z et al. A review of deep learning segmentation methods for carotid artery ultrasound images[J]. Neurocomputing, 545, 126298(2023).

    [92] Guo Y M, Liu Y, Oerlemans A et al. Deep learning for visual understanding: a review[J]. Neurocomputing, 187, 27-48(2016).

    [93] Salehi A, Balasubramanian M. DDCNet: deep dilated convolutional neural network for dense prediction[J]. Neurocomputing, 523, 116-129(2023).

    [94] Gutta S, Kadimesetty V S, Kalva S K et al. Deep neural network-based bandwidth enhancement of photoacoustic data[J]. Journal of Biomedical Optics, 22, 116001(2017).

    [95] Seong D, Lee E, Kim Y et al. Three-dimensional reconstructing undersampled photoacoustic microscopy images using deep learning[J]. Photoacoustics, 29, 100429(2023).

    [96] Yang C C, Lan H R, Gao F et al. Review of deep learning for photoacoustic imaging[J]. Photoacoustics, 21, 100215(2021).

    [98] Vu T, DiSpirito A, Li D W et al. Deep image prior for undersampling high-speed photoacoustic microscopy[J]. Photoacoustics, 22, 100266(2021).

    [99] Zhao H X, Ke Z W, Yang F et al. Deep learning enables superior photoacoustic imaging at ultralow laser dosages[J]. Advanced Science, 8, 2003097(2021).

    [100] Kim J, Kim G, Li L et al. Deep learning acceleration of multiscale superresolution localization photoacoustic imaging[J]. Light: Science & Applications, 11, 131(2022).

    [101] Zhao H X, Huang J, Zhou Q et al. Deep learning-based optical-resolution photoacoustic microscopy for in vivo 3D microvasculature imaging and segmentation[J]. Advanced Intelligent Systems, 4, 2200004(2022).

    [102] Cheng S F, Zhou Y Y, Chen J B et al. High-resolution photoacoustic microscopy with deep penetration through learning[J]. Photoacoustics, 25, 100314(2022).

    [103] Zhang Z Y, Jin H R, Zhang W W et al. Adaptive enhancement of acoustic resolution photoacoustic microscopy imaging via deep CNN prior[J]. Photoacoustics, 30, 100484(2023).

    [104] Meng J, Zhang X T, Liu L J et al. Depth-extended acoustic-resolution photoacoustic microscopy based on a two-stage deep learning network[J]. Biomedical Optics Express, 13, 4386-4397(2022).

    [105] He D, Zhou J S, Shang X Y et al. De-noising of photoacoustic microscopy images by attentive generative adversarial network[J]. IEEE Transactions on Medical Imaging, 42, 1349-1362(2023).

    [106] Gao Y, Feng T, Qiu H X et al. 4D spectral-spatial computational photoacoustic dermoscopy[J]. Photoacoustics, 34, 100572(2023).

    [107] Lou Y, Zhou W M, Matthews T P et al. Generation of anatomically realistic numerical phantoms for photoacoustic and ultrasonic breast imaging[J]. Journal of Biomedical Optics, 22, 041015(2017).

    [108] Guan S, Khan A A, Sikdar S et al. Limited-view and sparse photoacoustic tomography for neuroimaging with deep learning[J]. Scientific Reports, 10, 8510(2020).

    [109] Davoudi N, Deán-Ben X L, Razansky D. Deep learning optoacoustic tomography with sparse data[J]. Nature Machine Intelligence, 1, 453-460(2019).

    [110] Haq I U, Kawahara Y. Convolutional autoencoder-based reconstruction of vascular structures in photoacoustic images[J]. Proceedings of SPIE, 11359, 113591C(2020).

    [111] Estrada H, Turner J, Kneipp M et al. Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution[J]. Laser Physics Letters, 11, 045601(2014).

    [112] Xing W X, Wang L D, Maslov K et al. Integrated optical- and acoustic-resolution photoacoustic microscopy based on an optical fiber bundle[J]. Optics Letters, 38, 52-54(2013).

    [113] Moothanchery M, Bi R Z, Kim J Y et al. High-speed simultaneous multiscale photoacoustic microscopy[J]. Journal of Biomedical Optics, 24, 086001(2019).

    [114] Ma H G, Cheng Z W, Wang Z Y et al. Switchable optical and acoustic resolution photoacoustic dermoscope dedicated into in vivo biopsy-like of human skin[J]. Applied Physics Letters, 116, 073703(2020).

    [115] Moothanchery M, Pramanik M. Performance characterization of a switchable acoustic resolution and optical resolution photoacoustic microscopy system[J]. Sensors, 17, 357(2017).

    [116] Yao J J, Wang L D, Yang J M et al. Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror[J]. Journal of Biomedical Optics, 17, 080505(2012).

    [117] Park K, Kim J Y, Lee C et al. Handheld photoacoustic microscopy probe[J]. Scientific Reports, 7, 13359(2017).

    [118] Zhou H C, Chen N B, Zhao H X et al. Optical-resolution photoacoustic microscopy for monitoring vascular normalization during anti-angiogenic therapy[J]. Photoacoustics, 15, 100143(2019).

    [119] Zhao H X, Chen N B, Li T et al. Motion correction in optical resolution photoacoustic microscopy[J]. IEEE Transactions on Medical Imaging, 38, 2139-2150(2019).

    [120] Hu S, Maslov K, Wang L V. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed[J]. Optics Letters, 36, 1134-1136(2011).

    [121] Wang Z Y, Yang F, Cheng Z W et al. Photoacoustic-guided photothermal therapy by mapping of tumor microvasculature and nanoparticle[J]. Nanophotonics, 10, 3359-3368(2021).

    [122] Sun T, Huang G J, Zhang Z H. Characteristics analysis of micro-vessels liver cancer based on high resolution photoacoustic microscopy[J]. Chinese Journal of Lasers, 50, 1507105(2023).

    [123] Kim H, Kim J Y, Cho S et al. Performance comparison of high-speed photoacoustic microscopy: opto-ultrasound combiner versus ring-shaped ultrasound transducer[J]. Biomedical Engineering Letters, 12, 147-153(2022).

    [124] Aguirre J, Schwarz M, Garzorz N et al. Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy[J]. Nature Biomedical Engineering, 1, 68(2017).

    [125] Cheng Z W, Ma H G, Wang Z Y et al. In vivo volumetric monitoring of revascularization of traumatized skin using extended depth-of-field photoacoustic microscopy[J]. Frontiers of Optoelectronics, 13, 307-317(2020).

    [126] Xu M H, Wang L V. Photoacoustic imaging in biomedicine[J]. Review of Scientific Instruments, 77, 041101(2006).

    [127] Dong B Q, Li H, Zhang Z et al. Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection[J]. Optica, 2, 169-176(2015).

    [128] Kellnberger S, Soliman D, Tserevelakis G J et al. Optoacoustic microscopy at multiple discrete frequencies[J]. Light: Science & Applications, 7, 109(2018).

    [129] Ma H G, Ding R X, Huang Q H. 3D confocal photoacoustic dermoscopy using a multifunctional sono-opto probe[C](2021).

    [130] Karmacharya M B, Sultan L R, Sehgal C M. Photoacoustic monitoring of oxygenation changes induced by therapeutic ultrasound in murine hepatocellular carcinoma[J]. Scientific Reports, 11, 4100(2021).

    [131] Zhang J D, Duan F, Liu Y J et al. High-resolution photoacoustic tomography for early-stage cancer detection and its clinical translation[J]. Radiology: Imaging Cancer, 2, e190030(2020).

    [132] Toi M, Asao Y, Matsumoto Y et al. Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array[J]. Scientific Reports, 7, 41970(2017).

    [133] Cao R, Li J, Ning B et al. Functional and oxygen-metabolic photoacoustic microscopy of the awake mouse brain[J]. NeuroImage, 150, 77-87(2017).

    [134] Chen J B, Zhang Y C, He L Y et al. Wide-field polygon-scanning photoacoustic microscopy of oxygen saturation at 1-MHz A-line rate[J]. Photoacoustics, 20, 100195(2020).

    [135] Liu C, Liang Y Z, Wang L D. Optical-resolution photoacoustic microscopy of oxygen saturation with nonlinear compensation[J]. Biomedical Optics Express, 10, 3061-3069(2019).

    [136] Yao J J, Wang L V. Perspective on fast-evolving photoacoustic tomography[J]. Journal of Biomedical Optics, 26, 060602(2021).

    [137] Ning B, Sun N D, Cao R et al. Ultrasound-aided multi-parametric photoacoustic microscopy of the mouse brain[J]. Scientific Reports, 5, 18775(2015).

    [138] Zhu B W, Li H H, Xie C Y et al. Photoacoustic microscopic imaging of cerebral vessels for intensive monitoring of metabolic acidosis[J]. Molecular Imaging and Biology, 25, 659-670(2023).

    [139] Li L Y, Qin W, Li T T et al. High-speed adaptive photoacoustic microscopy[J]. Photonics Research, 11, 2084-2092(2023).

    [140] Zhang Y L, Wang S S, She M Z et al. Spectrally programmable Raman fiber laser with adaptive wavefront shaping[J]. Photonics Research, 11, 20-26(2022).

    [141] Tu S J, Lei Q N, Cai Y J et al. Generation of Lommel beams through highly scattering media[J]. Chinese Optics Letters, 20, 092501(2022).

    [142] Li H H, Yu Z P, Zhong T T et al. Towards ideal focusing of diffused light via optical wavefront shaping[J]. Advanced Photonics, 5, 020502(2023).

    [143] Wu J, Feng T, Chen Q et al. Photoacoustic guided wavefront shaping using digital micromirror devices[J]. Optics & Laser Technology, 174, 110570(2024).

    [144] Yang J G, Choi S, Kim J et al. Recent advances in deep-learning-enhanced photoacoustic imaging[J]. Advanced Photonics Nexus, 2, 054001(2023).

    [145] Wei X, Feng T, Huang Q et al. Deep Learning-powered biomedical photoacoustic imaging[J]. Neurocomputing, 127207(2023).

    [146] Sun T, Lü J, Zhao X Y et al. In vivo liver function reserve assessments in alcoholic liver disease by scalable photoacoustic imaging[J]. Photoacoustics, 34, 100569(2023).

    Tools

    Get Citation

    Copy Citation Text

    Haigang Ma, Jiahui Wu, Yahui Zhu, Xiang Wei, Yinshi Yu, Shili Ren, Qian Chen, Chao Zuo. Photoacoustic Microscopy Imaging for Advanced Biomedical Applications (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(6): 0618006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Microscopy

    Received: Nov. 7, 2023

    Accepted: Dec. 21, 2023

    Published Online: Mar. 22, 2024

    The Author Email: Ma Haigang (mahaigang@njust.edu.cn), Zuo Chao (zuochao@njust.edu.cn)

    DOI:10.3788/LOP232447

    Topics