Journal of the Chinese Ceramic Society, Volume. 50, Issue 9, 2567(2022)
Recent Developments on Broadband Near-Infrared Luminescent Materials Activated by 3d Transition Metal Ions
[1] [1] FERRARI M, MOTTOLA L, QUARESIMA V, Principles, techniques, and limitations of near infrared spectroscopy[J]. Can J Appl Phys, 2004, 29(4): 463-487.
[2] [2] EGGEBRECHT A T, FERRADAL S L, ROBICHAUX-VIEHOEVER A, et al. Mapping distributed brain function and networks with diffuse optical tomography[J]. Nat Photon, 2014, 8(6): 448-454.
[3] [3] VENTUR A M, DE JAGER A, DE PUTTER H, et al. Non-destructive determination of soluble solids in apple fruit by near infrared spectroscopy (NIRS)[J]. Postharvest Biol Technol, 1998, 14(1): 21-27.
[4] [4] HAYASHI D, VAN DONGEN A M, BOEREKAMP J, et al. A broadband LED source in visible to short-wave-infrared wavelengths for spectral tumor diagnostics[J]. Appl Phys Lett, 2017, 110(23): 233701.
[7] [7] XIONG P X, LI Y Y, PENG M Y. Recent advances in super broad infrared luminescence bismuth-doped crystals[J]. Iscience, 2020, 23: 101578.
[9] [9] SUN H T, ZHOU J J, QIU J R. Recent advances in bismuth activated photonic materials[J]. Prog Mater Sci, 2014, 64: 1-72.
[10] [10] KUCK S. Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers[J]. Appl Phys B, 2002, 72(5): 515-562.
[11] [11] QIAO J W, ZHOU G J, ZHOU Y Y, et al. Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes[J]. Nat Commun, 2019, 10: 5267.
[12] [12] KITAGAWA Y, UEDA J, XU J, et al. Deep-red to near-infrared luminescence from Eu2+-trapped exciton states in YSiO2N[J]. Phys Chem Chem Phys, 2022, 24, 4348-4357.
[13] [13] WANG L, XIE R J, SUEHIRO T, et al. Down-conversion nitride materials for solid state lighting: recent advances and perspectives[J]. Chem Rev, 2018, 118(4): 1951-2009.
[14] [14] HENDERSON B, IMBUSCH G F. Optical Spectroscopy of Inorganic Solids[M]. Clarendon, Oxford, 1989.
[15] [15] SCHLFER H L, GLIEMANN G. Einführung in die Ligandenfeldtheorie[M]. Akademische, Frankfurt am Main, 1980.
[16] [16] SUGANO S, TANABE Y, KAMIMURA H: Multiplets of Transition-Metal ions in Crystals[M]. Academic, New York, 1970.
[17] [17] TANABE Y, SUGANO S. On the absorption spectra of complex ions. I[J]. J Phys Soc Jpn, 1954, 9(6): 753-766.
[18] [18] ORGEL L E. Spectra of transition-metal complexes[J]. J Chem Phys, 1955, 23: 1004-1014.
[19] [19] JRGENSEN C K. Absorption Spectra and Chemical Bonding in Complexes[M], Pergamon Press, Elmsford, NY, 1962.
[20] [20] MOULTON P F. Spectroscopic and laser characteristics of Ti: Al2O3[J]. J Opt Soc Am B, 1986, 3(1): 125-133.
[21] [21] GARCIA-REVILLA S, RODRIGUEZ F, VALIENTE R, et al. Optical spectroscopy of Al2O3: Ti3+ single crystal under hydrostatic pressure. The influence on the Jahn-Teller coupling[J]. J Phys: Condens Matter, 2002, 14: 447-459.
[22] [22] ANDRADE L H C, LIMA S M, NOVATSKI A, et al. Long fluorescence lifetime of Ti3+-doped low silica calcium aluminosilicate glass[J]. Phys Rev Lett, 2008, 100, 027402.
[23] [23] MEYN J P, DANGER T, PETERMANN K, et al. Spectroscopic characterization of V4+-doped Al2O3 and YA1O3[J]. J Lumin, 1993, 55(2): 55-62.
[24] [24] BRUNOLD T C, GDEL H U, KAMINSKII A A. Optical spectroscopy of V4+ doped crystals of Mg2SiO4 and Ca2GeO4[J]. Chem Phys Lett, 1997, 271(4-6): 327-334.
[25] [25] HAZENKAMP M F, GDEL H U. Near-infrared luminescence of chromium(V)-doped Li3PO4[J]. Chem Phys Lett, 1996, 251(5-6): 301-304.
[26] [26] HAZENKAMP M F, GDEL H U. Luminescence properties of chromium(V) doped into various host lattices[J]. J Lumin, 1996, 69(5-6): 235-244.
[27] [27] BRUNOLD T C, HAZENKAMP M F, GDEL H U. Manganate(VI)-A novel near-infrared broad-band emitter[J]. J Am Chem Soc, 1995, 117(20): 5598-5599.
[28] [28] Brunold T C, Güdel H U. Absorption and luminescence spectroscopy of manganese-doped BaSO4 crystals[J]. Chem Phys Lett, 1996, 257(1-2): 123-129.
[29] [29] BRUNOLD T C, GüDEL H U, KCK S. Excited-state absorption and laser potential of Mn6+-doped BaSO4 crystals[J]. J Opt Soc Am B, 1997, 14(9): 2 373-2 377.
[31] [31] KCK S, JANDER P. Spectroscopic properties of the tetrahedrally coordinated V3+ ion in oxide crystals[J]. Opt Mater, 1999, 13(3): 299-310.
[32] [32] KCK S, JANDER P. Luminescence from V3+ in tetrahedral oxo-coordination[J]. Chem. Phys. Lett., 1999, 300(1/2): 189-194.
[33] [33] ZHUANG Y X, TANABE S, QIU J R. Wavelength tailorability of broadband near-infrared luminescence in Cr4+-activated transparent glass-ceramics[J]. J Am Ceram Soc, 2014, 97(11): 3519-3523.
[35] [35] ZHUANG Y X, ZHOU J J, XIE J H, et al. Temperature-dependent broadband near-infrared luminescence in silicate glass ceramics containing Li2MgSiO4: Cr4+ nanocrystals[J]. J Mater Res, 2010, 25, 1833-1837.
[36] [36] ZHUANG Y X, TENG Y, LUO J, et al. Broadband optical amplification in silicate glass ceramics containing Li2ZnSiO4: Cr4+ nanocrystals[J]. Appl Phys Lett, 2009, 95: 111913.
[37] [37] BRUNOLD T C, HAUSER A, GDEL H U. Absorption and luminescence spectroscopy of ferrate (VI) doped into crystals of K2MO4 (M=S, SE, CR, MO)[J]. J Lumin, 1994, 59(5): 321-332.
[38] [38] BRUNOLD T C, GDEL H U, KCK S, et al. Excited state properties of ferrate (VI) doped crystals of K2SO4 and K2CrO4[J]. J Lumin, 1996, 65(6): 293-301.
[39] [39] JOHNSON L F, GUGGENHEIM H J, THOMAS R A. Phonon-Terminated Optical Masers[J], Phys Rev, 1966, 149(1): 179-185.
[40] [40] PAYNE S A, CHASE L L, WILKE G D. Excited-state absorption spectra of V2+ in KMgF3 and MgF2[J]. Phys Rev, 1988, 37(2): 998-1006.
[41] [41] BRAUCH U, DRR U. Vibronic laser action of V2+: CsCaF3[J]. Opt Commun, 1985, 55(1): 35-39.
[42] [42] JOHNSON L F, GUGGENHEIM H J. Phonon-terminated coherent emission from V2+ ions in MgF2[J]. J Appl Phys, 1967, 38(12): 4837-4839.
[43] [43] FANG M H, DE GUZMAN G N A, BAO Z, et al. Ultra-high- efficiency near-infrared Ga2O3: Cr3+ phosphor and controlling of phytochrome[J]. J Mater Chem C, 2020, 8, 11013-11017.
[44] [44] FANG M H, CHEN K C, MAJEWSKA N, et al. Hidden structural evolution and bond valence control in near-infrared phosphors for light-emitting diodes[J]. ACS Energy Lett, 2021, 6, 109-114.
[45] [45] HE S, ZHANG L L, WU H, et al. Efficient super broadband NIR Ca2LuZr2Al3O12: Cr3+, Yb3+ garnet phosphor for pc-LED light source toward nir spectroscopy applications[J]. Adv Opt Mater, 2020, 8: 1901684.
[46] [46] ZHANG L L, WANG D D, HAO Z D, et al. Cr3+-doped broadband nir garnet phosphor with enhanced luminescence and its application in NIR spectroscopy[J]. Adv Opt Mater, 2019, 7, 1900185.
[47] [47] KCK S, HARTUNG S, HURLING S, et al. Optical transitions in Mn3+-doped garnets[J]. Phys Rev B, 1998, 57(4): 2203-2216.
[48] [48] KCK S, HARTUNG S, HURLING S, et al. Emission of octahedrally coordinated Mn3+ in garnets[J] Spectrochim Acta A, 1998, 54(11): 1741-1749.
[49] [49] MARIA NETO A, ABRITTA A, DE S. BARROS F, et al. A comparative study of the optical properties of Fe3+ in ordered LiGa5O8 and LiAl5O8[J]. J Lumin, 1981, 22(2): 109-120.
[50] [50] MELAMED N T, VICCARO P J, ARTMAN J O, et al. The fluorescence of Fe3+ in ordered and disordered phases of LiAl5O8[J]. J Lumin, 1970(1/2): 348-367.
[51] [51] ZHOU Z H, ZHANG S, Le Y K, et al. Defect enrichment in near inverse spinel configuration to enhance the persistent luminescence of Fe3+[J]. Adv Opt Mater, 2022, 10: 2101669.
[52] [52] RINES D M. High energy operation of a Co: MgF2 laser[J]. Opt Lett, 1994, 19(9): 628-630.
[53] [53] WELFORD D, MOULTON P F, Room-temperature operation of a Co: MgF2 laser[J]. Opt Lett, 1988, 13(11): 975-979.
[54] [54] KOETKE J, PETERMANN K, HUBER G. Infrared excited-state absorption of Ni2+ doped crystals[J]. J Lumin, 1993, 60-61: 197-200.
[55] [55] KOETKE J. Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers[D]. Germany: Hamburg University, 1994.
[56] [56] ZHOU S F, JIANG N, WU B T, Ligand-driven wavelength-tunable and ultra-broadband infrared luminescence in single-ion-doped transparent hybrid materials[J]. Adv Funct Mater, 2009, 19: 2081-2088.
[57] [57] ZHOU S F, HAO J H, QIU J R, Ultra-broadband near-infrared luminescence of Ni2+: ZnO-Al2O3-SiO2 nanocomposite glasses prepared by sol-gel method[J]. J Am Ceram Soc, 2011, 94: 2902-2905.
[58] [58] ZHOU S F, LI C Y, YANG G, et al. Self-limited nanocrystallization- mediated activation of semiconductor nanocrystal in an amorphous solid[J]. Adv Funct Mater, 2013, 23, 5436-5443.
[59] [59] WU B T, JIANG N, ZHOU S F, et al. Transparent Ni2+-doped silicate glass ceramics for broadband near-infrared emission[J]. Opt Mater, 2008, 30: 1900-1904.
[60] [60] KIMPEL B M, SCHULZ H J. Infrared luminescence of ZnO: Cu2+(d9)[J]. Phys Rev B, 1991, 43(12): 9938-9940.
[61] [61] POZZA G, AJ D, CHIARI G, et al. Photoluminescence of the inorganic pigments Egyptian blue, Han blue and Han purple[J]. J Cult Heri, 2000(1): 393-398.
[62] [62] ACCORSI G, VERRI G, BOLOGNESI M, et al. The exceptional near-infrared luminescence properties of cuprorivaite (Egyptian blue)[J]. Chem Commun, 2009, 45(23): 3392-3394.
[63] [63] BERKE H. The invention of blue and purple pigments in ancient times[J]. Chem Soc Rev, 2007, 36(1): 15-30.
[64] [64] LI Y J, YE S, WANG C H, et al. Temperature-dependent near-infrared emission of highly concentrated Cu2+ in CaCuSi4O10 phosphor[J]. J Mater Chem C, 2014, 2(48): 10395-10402.
[65] [65] LIU X F, QIU J R. Recent advances in energy transfer in bulk and nanoscale luminescent materials: from spectroscopy to applications[J]. Chem Soc Rev, 2015, 44(23): 8714-8746.
Get Citation
Copy Citation Text
WANG Hongyu, LIU Xiaofeng. Recent Developments on Broadband Near-Infrared Luminescent Materials Activated by 3d Transition Metal Ions[J]. Journal of the Chinese Ceramic Society, 2022, 50(9): 2567
Category:
Received: Apr. 17, 2022
Accepted: --
Published Online: Jan. 3, 2023
The Author Email: Hongyu WANG (qianan_why@126.com)