Infrared and Laser Engineering, Volume. 51, Issue 2, 20210907(2022)

Evolution mechanism of transient optical properties of ultrafast laser-induced monocrystalline silicon

Xiaojie Liao, Suying Lin, and Bing Han
Author Affiliations
  • School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • show less
    Figures & Tables(6)
    Variation of electron temperature with time (a) and lattice temperature with time (b) under subpicosecond laser irradiation with energy density of 0.25, 0.28, 0.30, 0.35, 0.40 J/cm2 and pulse width of 430 fs; Variation of electron temperature with time (c) and lattice temperature with time (d) under picosecond laser irradiation with energy density of 0.20, 0.30, 0.38, 0.41, 0.42 J/cm2 of 8 ps
    Variation of electron temperature with time under laser irradiation with pulse width of 430, 700, 1000, 1200, 1500 fs and energy density of 0.35 J/cm2
    Variation of real and imaginary parts of dielectric constant with time under the action of pulse width of 8 ps and pulse energy density of 0.28 J/cm2
    Under laser irradiation with pulse width of 430 fs and 8 ps respectively, (a) change of peak carrier number density and the real part of peak dielectric constant on monocrystalline silicon surface with the change of incident laser energy density; (b) Change of peak refractive index and peak extinction coefficient on monocrystalline silicon surface with the change of incident laser energy density
    Changes of refractive index and extinction coefficient of silicon surface with pulse width when energy density is 0.28 J /cm2 and 0.31 J /cm2, respectively
    • Table 1. Model parameters of monocrystalline silicon

      View table
      View in Article

      Table 1. Model parameters of monocrystalline silicon

      QuantitySymbolValue
      Electron-hole pair heat conductivity[16]KC/W·(m·K)−17.1×10−3TC−0.5552
      Lattice heat conductivity[16]KL/W·(m·K)−11.585×105TL−1.23
      Carrier heat conductivity[16]CC/J·(m3·K)−13NkB
      Lattice heat capacity[16]CL/J·(m3·K)−11.978×106+354TL−3.68×106/TL2
      Auger recombination coefficient[16]γ/m6·s−13.8×10−43
      Ambipolar diffusion coefficientD/ms−1(300×1.8×10−3)/TL
      Impact ionization coefficient[16]θ/s−13.6×1010exp(−1.5Eg/(kBTC))
      Effective electron mass[14]m*/kg 9.1×10−31(0.15+3.1×10−5TC)
      Energy relaxation time[16]τe/s 0.5×10−12{1+[N/(2×1027)]2}
      Interband absorption (532 nm)[17]α/m−15.02×105exp(TL/430)
      Two-photon absorption (532 nm)[18]β/s·m·J−10
      Free-carrier absorption cross section (532 nm)[19]Θ/m20
      Interband absorption (800 nm)[16]α/m−11.12×105exp(TL/430)
      Two-photon absorption (800 nm)[16]β/s·m·J−19×10−11
      Free-carrier absorption cross section (800 nm)[16]Θ/m22.9×10−22(TL/300)
      Latent heat of melting[16]Lm /J·m24206×106
      Latent heat of evaporation[16]Lv /J·m232020×106
      Electron heat capacity[16]Ce/J·(m3·K)−1100Te
      Lattice heat capacity[16]Cl/J·(m3·K)−11.06×106×(3.005−2.629×10−4Tl)
      Electron heat conductivity[16]Ke/W·(m·K)−167
    Tools

    Get Citation

    Copy Citation Text

    Xiaojie Liao, Suying Lin, Bing Han. Evolution mechanism of transient optical properties of ultrafast laser-induced monocrystalline silicon[J]. Infrared and Laser Engineering, 2022, 51(2): 20210907

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special issue-Laser technology and its application

    Received: Nov. 25, 2021

    Accepted: --

    Published Online: Mar. 21, 2022

    The Author Email:

    DOI:10.3788/IRLA20210907

    Topics