Journal of the Chinese Ceramic Society, Volume. 50, Issue 1, 174(2022)
Recent Developments on High-Entropy Materials in Electrochemical Energy Storage
[1] [1] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat Chem, 2015,7(1): 19–29.
[2] [2] CHOW J, KOPP R J, PORTNEY P R. Energy resources and global development[J]. Science, 2003, 302(5650): 1528–1531.
[4] [4] BRUCE P G, SCROSATI B, TARASCON J M. Nanomaterials for rechargeable lithium batteries[J]. Angew Chem Int Ed, 2008, 47(16):2930–2946.
[5] [5] ARICO A S, BRUCE P, SCROSATI B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nat Mater,2005, 4(5): 366–377.
[6] [6] GEORGE E P, RAABE D, RITCHIE R O. High-entropy alloys[J]. Nat Rev Mater, 2019, 4(8): 515–534.
[7] [7] OSES C, TOHER C, CURTAROLO S. High-entropy ceramics[J]. Nat Rev Mater, 2020, 5(4): 295–309.
[8] [8] YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv Eng Mater, 2004, 6(5): 299–303.
[9] [9] MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts[J]. Acta Mater, 2017, 122: 448–511.
[10] [10] DORNHEIM M, DOPPIU S, BARKHORDARIAN G, et al. Hydrogen storage in magnesium-based hydrides and hydride composites[J].Scripta Mater, 2007, 56(10): 841–846.
[11] [11] LU Y, DONG Y, GUO S, et al. A promising new class of high-temperature alloys: Eutectic high-entropy alloys[J]. Sci Rep, 2014,4: 6200.
[12] [12] DING Q, ZHANG Y, CHEN X, et al. Tuning element distribution,structure and properties by composition in high-entropy alloys[J].Nature, 2019, 574(7777): 223–227.
[13] [13] SCHUH B, MENDEZ-MARTIN F, VOELKER B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation[J].Acta Mater, 2015, 96: 258–268.
[14] [14] HE J Y, WANG H, HUANG H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties[J]. Acta Mater,2016, 102:187–196.
[15] [15] TANG L, LI Z, CHEN K, et al. High-entropy oxides on valence combinations: Design and practice[J]. J Am Ceram Soc, 2020, 104(5):1953–1958.
[16] [16] ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides[J]. Nat Commun, 2015, 6: 8485.
[17] [17] JIANG B, YU Y, CUI J, et al. High-entropy-stabilized chalcogenides with high thermoelectric performance[J]. Science, 2021, 371(6531):830.
[18] [18] LENG Y, ZHANG Z, CHEN H, et al. Overcoming the phase separation within high-entropy metal carbide by poly(ionic liquid)s[J].Chem Commun, 2021, 57(30): 3676–3679.
[19] [19] JIN T, SANG X, UNOCIC R R, et al. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy[J]. Adv Mater, 2018, 30(23): 1707512.
[20] [20] GILD J, ZHANG Y, HARRINGTON T, et al. High-entropy metal diborides: A new class of high-entropy materials and a new type of ultrahigh temperature ceramics[J]. Sci Rep, 2016, 6: 37946.
[21] [21] QIN Y, LIU J-X, LI F, et al. A high entropy silicide by reactive spark plasma sintering[J]. J. Adv Ceram, 2019, 8(1): 148–152.
[22] [22] GILD J, BRAUN J, KAUFMANN K, et al. A high-entropy silicide:(Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2[J]. J Materiomics, 2019, 5(3): 337–343.
[23] [23] CHEN Y, FU H, HUANG Y, et al. Opportunities for high-entropy materials in rechargeable batteries[J]. Acs Mater Lett, 2021, 3(2):160–170.
[24] [24] MA Y, MA Y, WANG Q, et al. High-entropy energy materials:Challenges and new opportunities[J]. Energy Environ Sci, 2021, 14(5):2883–2905.
[25] [25] AMIRI A, SHAHBAZIAN-YASSAR R. Recent progress of high-entropy materials for energy storage and conversion[J]. J Mater Chem A, 2021,9(2): 782–823.
[26] [26] MURTY B S, EH J W, RANGANATHAN S. High Entropy Alloys[M].ELSEVIER, 2014: 18–20.
[27] [27] DAVID R. GASKELL D E L. Introduction to the Thermodynamics of Materials[M]. CRC Press,2018: 93–119.
[28] [28] SARKAR A, VELASCO L, WANG D, et al. High entropy oxides for reversible energy storage[J]. Nat Commun, 2018, 9:3400
[29] [29] YEH J W. Recent progress in high-entropy alloys[J]. Annales De Chimie-Sci Des Mater, 2006, 31(6): 633–648.
[30] [30] RANGANATHAN S. Alloyed pleasures: Multimetallic cocktails[J].Curr Sci, 2003, 85(10): 1404–1406.
[31] [31] WANG Q, SARKAR A, LI Z, et al. High entropy oxides as anode material for Li-ion battery applications: A practical approach[J].Electrochem Commun, 2019, 100: 121–125.
[32] [32] QIU N, CHEN H, YANG Z, et al. A high entropy oxide(Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance[J]. J Alloys Compd, 2019, 777: 767–774.
[33] [33] GHIGNA P, AIROLDI L, FRACCHIA M, et al. Lithiation mechanism in high-entropy oxides as anode materials for Li-ion batteries: An operando XAS study[J]. ACS Appl Mater Interf, 2020, 12(45):50344–50354.
[34] [34] LOKCU E, TOPARLI C, ANIK M. Electrochemical performance of(MgCoNiZn)1?xLixO high-entropy oxides in lithium-ion batteries[J].ACS Appl Mater Interf, 2020, 12(21): 23860–23866.
[35] [35] CHEN H, QIU N, WU B, et al. A new spinel high-entropy oxide (Mg0.2Ti0.2Zn0.2Cu0.2Fe0.2)3O4 with fast reaction kinetics and excellent stability as an anode material for lithium ion batteries[J]. RSC Adv,2020, 10(16): 9736–9744.
[36] [36] CHEN T Y, WANG S Y, KUO C H, et al. In operando synchrotron X-ray studies of a novel spinel (Ni0.2Co0.2Mn0.2Fe0.2Ti0.2)3O4 high-entropy oxide for energy storage applications[J]. J Mater Chem A,2020, 8(41): 21756–21770.
[37] [37] WANG D, JIANG S, DUAN C, et al. Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance[J]. J Alloys Compd, 2020, 844: 156158
[38] [38] YAN J, WANG D, ZHANG X, et al. A high-entropy perovskite titanate lithium-ion battery anode[J]. J Mater Sci, 2020, 55(16):6942–6951.
[39] [39] WANG Q, SARKAR A, WANG D, et al. Multi-anionic and -cationic compounds: New high entropy materials for advanced Li-ion batteries[J]. Energy Environ Sci, 2019, 12(8): 2433–2442.
[40] [40] LUN Z, OUYANG B, KWON D H, et al. Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries[J]. Nat Mater,2020, 20(2): 214–221.
[42] [42] ZHAO C, DING F, LU Y, et al. High-entropy layered oxide cathodes for sodium-ion batteries[J]. Angew Chem, Int Ed, 2020, 59(1):264–269.
[44] [44] MA Y, MA Y, DREYER S L, et al. High-entropy metal-organic frameworks for highly reversible sodium storage[J]. Adv Mater, 2021,2101342.
[45] [45] KONG K, HYUN J, KIM Y, et al. Nanoporous structure synthesized by selective phase dissolution of AlCoCrFeNi high entropy alloy and its electrochemical properties as supercapacitor electrode[J]. J Power Sources, 2019, 437: 226927.
[46] [46] XU X, DU Y, WANG C, et al. High-entropy alloy nanoparticles on aligned electronspun carbon nanofibers for supercapacitors[J]. J Alloys Compd, 2020, 822: 153642.
[47] [47] JIANG W, WANG T, CHEN H, et al. Room temperature synthesis of high-entropy Prussian blue analogues[J]. Nano Energy, 2021, 79:105464.
[48] [48] WANG C, PING W, BAI Q, et al. A general method to synthesize and sinter bulk ceramics in seconds[J]. Science, 2020, 368(6490): 521–526.
[49] [49] OKEJIRI F, ZHANG Z, LIU J, et al. Room-temperature synthesis of high-entropy perovskite oxide nanoparticle catalysts through ultrasonication-based method[J]. Chem Sus Chem, 2020, 13(1):111–115.
[50] [50] YAO Y G, HUANG Z N, XIE P F, et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles[J]. Science, 2018, 359(6383):1489–1494.
[51] [51] MCCORMICK C R, SCHAAK R E. Simultaneous multication exchange pathway to high-entropy metal sulfide nanoparticles[J]. J Am Chem Soc, 2021, 143(2): 1017–1023.
[52] [52] WEN C, ZHANG Y, WANG C, et al. Machine learning assisted design of high entropy alloys with desired property[J]. Acta Mater, 2019, 170:109–117.
[53] [53] ZHANG Y, WEN C, WANG C, et al. Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models[J]. Acta Mater, 2020, 185: 528–539.
[54] [54] KAUFMANN K, VECCHIO K S. Searching for high entropy alloys: A machine learning approach[J]. Acta Mater, 2020, 198: 178–222.
Get Citation
Copy Citation Text
MEI Yu, CHEN Jun, DENG Wentao, ZOU Guoqiang, HOU Hongshuai, JI Xiaobo. Recent Developments on High-Entropy Materials in Electrochemical Energy Storage[J]. Journal of the Chinese Ceramic Society, 2022, 50(1): 174
Special Issue:
Received: Jul. 26, 2021
Accepted: --
Published Online: Nov. 14, 2022
The Author Email: