Acta Optica Sinica, Volume. 44, Issue 12, 1201011(2024)

Numerical Study on Photoacoustic Tomography Reconstruction of Two-Dimensional Transverse Image of Femtosecond Laser Filaments

Qingwei Zeng1, Lei Liu1,2、*, Shuai Hu1,2, Shulei Li1, and Shijun Zhao1
Author Affiliations
  • 1College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, Hunan , China
  • 2High Impact Weather Key Laboratory of China Meteorological Administration, Changsha 410073, Hunan , China
  • show less
    References(34)

    [1] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports, 441, 47-189(2007).

    [2] Wang T J, Chen N, Guo H et al. Principle and research progress of atmospheric remote sensing by intense femtosecond lasers[J]. Laser & Optoelectronics Progress, 59, 070001(2022).

    [3] Zeng Q W, Gao T C, Liu L et al. Advances in mechanism research of femtosecond laser filamentation induced hydrometeors formation[J]. Infrared and Laser Engineering, 48, 0406002(2019).

    [4] Wolf J P. Short-pulse lasers for weather control[J]. Reports on Progress in Physics, 81, 026001(2018).

    [5] Feng Z F, Liu X, Hao T et al. Review on ultra-long distance propagation of femtosecond laser pulses for remote sensing applications[J]. Chinese Journal of Lasers, 50, 0708003(2023).

    [6] Cheng J H, Hu L X, Wang T J et al. Research progress of femtosecond laser-induced multifilament generation and regulation[J]. Chinese Journal of Lasers, 50, 1400001(2023).

    [7] Point G, Thouin E, Mysyrowicz A et al. Energy deposition from focused terawatt laser pulses in air undergoing multifilamentation[J]. Optics Express, 24, 6271-6282(2016).

    [8] Liu W W, Xue J Y, Su Q et al. Research progress on ultrafast laser filamentation[J]. Chinese Journal of Lasers, 47, 0500003(2020).

    [9] Schroeder M C, Andral U, Wolf J P. Opto-mechanical expulsion of individual micro-particles by laser-induced shockwave in air[J]. AIP Advances, 12, 095119(2022).

    [10] Matthews M, Pomel F, Wender C et al. Laser vaporization of cirrus-like ice particles with secondary ice multiplication[J]. Science Advances, 2, e1501912(2016).

    [11] Zeng Q W, Liu L, Ju J J et al. Numerical investigation on the heat deposition characteristics of femtosecond laser pulses undergoing multiple filaments[J]. Physica Scripta, 95, 085605(2020).

    [12] Xun M N, Shang B P, Qi P F et al. Acoustic and fluorescence characterization of femtosecond laser filament spatial properties: comparative study[J]. Chinese Journal of Lasers, 50, 0708008(2023).

    [13] Rosenthal E W, Jhajj N, Larkin I et al. Energy deposition of single femtosecond filaments in the atmosphere[J]. Optics Letters, 41, 3908-3911(2016).

    [14] Bychkov A S, Cherepetskaya E B, Karabutov A A et al. Laser optoacoustic tomography for the study of femtosecond laser filaments in air[J]. Laser Physics Letters, 13, 085401(2016).

    [15] Wang L V, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 335, 1458-1462(2012).

    [16] Potemkin F V, Mareev E I, Rumiantsev B V et al. Two-dimensional photoacoustic imaging of femtosecond filament in water[J]. Laser Physics Letters, 15, 075403(2018).

    [17] Zeng Q W, Liu L, Hu S et al. Femtosecond laser mercerization acoustic image reconstruction based on multivariate linear array detector[J]. Infrared and Laser Engineering, 51, 20210774(2022).

    [18] Rumiantsev B V, Mareev E I, Bychkov A S et al. Three-dimensional hybrid optoacoustic imaging of the laser-induced plasma and deposited energy density under optical breakdown in water[J]. Applied Physics Letters, 118, 011109(2021).

    [19] Luo X F, Wang B, Peng K et al. Back-projection method with fast time-delay correction for photoacoustic tomography reconstruction based on a focused sound field model[J]. Acta Physica Sinica, 71, 078102(2022).

    [20] Xu M H, Wang L V. Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction[J]. Physical Review E, 67, 056605(2003).

    [21] Choi W, Oh D, Kim C. Practical photoacoustic tomography: realistic limitations and technical solutions[J]. Journal of Applied Physics, 127, 230903(2020).

    [22] Wahlstrand J K, Jhajj N, Rosenthal E W et al. Direct imaging of the acoustic waves generated by femtosecond filaments in air[J]. Optics Letters, 39, 1290-1293(2014).

    [23] Mareev E I, Rumiantsev B V, Migal E A et al. A comprehensive approach to the characterization of the deposited energy density during laser-matter interactions in liquids and solids[J]. Measurement Science and Technology, 31, 085204(2020).

    [24] Uryupina D S, Bychkov A S, Pushkarev D V et al. Laser optoacoustic diagnostics of femtosecond filaments in air using wideband piezoelectric transducers[J]. Laser Physics Letters, 13, 095401(2016).

    [25] Bergé L, Skupin S, Lederer F et al. Multiple filamentation of terawatt laser pulses in air[J]. Physical Review Letters, 92, 225002(2004).

    [26] Heritier J M. Electrostrictive limit and focusing effects in pulsed photoacoustic detection[J]. Optics Communications, 44, 267-272(1983).

    [27] Pramanik M. Improving tangential resolution with a modified delay-and-sum reconstruction algorithm in photoacoustic and thermoacoustic tomography[J]. Journal of the Optical Society of America A, 31, 621-627(2014).

    [28] Warbal P, Pramanik M, Saha R K. Impact of sensor apodization on the tangential resolution in photoacoustic tomography[J]. Journal of the Optical Society of America A, 36, 245-252(2019).

    [29] Pushkarev D, Mitina E, Shipilo D et al. Transverse structure and energy deposition by a subTW femtosecond laser in air: from single filament to superfilament[J]. New Journal of Physics, 21, 033027(2019).

    [30] Sasoh A, Ohtani T, Mori K. Pressure effect in a shock-wave-plasma interaction induced by a focused laser pulse[J]. Physical Review Letters, 97, 205004(2006).

    [31] Liu W, Gravel J-F, Théberge F et al. Background reservoir: its crucial role for long-distance propagation of femtosecond laser pulses in air[J]. Applied Physics B, 80, 857-860(2005).

    [32] Li J, Zhang M, Bogdan P. An approach to compute transient acoustic field radiated by air-coupled transducer[J]. Nondestructive Testing, 42, 59-62(2020).

    [33] Sun Z, Sun H F. Influence of ultrasonic detector characteristics on image quality in biological photoacoustic tomography and its solution[J]. Chinese Journal of Biomedical Engineering, 40, 731-742(2021).

    [34] Kalva S K, Pramanik M. Experimental validation of tangential resolution improvement in photoacoustic tomography using modified delay-and-sum reconstruction algorithm[J]. Journal of Biomedical Optics, 21, 086011(2016).

    Tools

    Get Citation

    Copy Citation Text

    Qingwei Zeng, Lei Liu, Shuai Hu, Shulei Li, Shijun Zhao. Numerical Study on Photoacoustic Tomography Reconstruction of Two-Dimensional Transverse Image of Femtosecond Laser Filaments[J]. Acta Optica Sinica, 2024, 44(12): 1201011

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Aug. 7, 2023

    Accepted: Oct. 27, 2023

    Published Online: Mar. 7, 2024

    The Author Email: Liu Lei (liulei17c@nudt.edu.cn)

    DOI:10.3788/AOS231374

    Topics