Optical Instruments, Volume. 44, Issue 4, 39(2022)

Multiscale hypergraph convolutional network for skeleton-based action recognition

Xiaofei QIN1... Ying ZHAO1, Yijie ZHANG1, Ruijie DU1, Hanwen QIAN1, Meng CHEN2, Wenqi ZHANG2 and Xuedian ZHANG1 |Show fewer author(s)
Author Affiliations
  • 1School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2Institute of Aerospace System Engineering of Shanghai, Shanghai 201109, China
  • show less
    Figures & Tables(11)
    Action recognition process
    Structure of multiscale hypergraph convolutional network
    Structure of adaptive graph convolution block
    Allocation strategy for hyperedge merging
    Structure of multiscale temporal graph convolution block
    Learning curve of multiscale hypergraph convolutional network on NTU-RGB+D dataset
    • Table 1. Ablation study of HCB and HMB

      View table
      View in Article

      Table 1. Ablation study of HCB and HMB

      方法CV精度/%
      Baseline95.3
      Baseline+ ${\varepsilon }_{10}$96.0
      Baseline+ ${\varepsilon }_{10}$+ ${\varepsilon }_{5}$97.1
    • Table 2. Comparison of results obtained via different skeleton input data

      View table
      View in Article

      Table 2. Comparison of results obtained via different skeleton input data

      结构数据CV精度/%
      三流骨架、关节、动态97.1
      w/o骨架96.0
      两流w/o关节95.8
      w/o动态95.2
      骨架93.7
      单流关节93.5
      动态92.1
    • Table 3. The performance of models with different dilation factors

      View table
      View in Article

      Table 3. The performance of models with different dilation factors

      空洞率CV精度/%
      195.1
      295.6
      396.1
      495.9
      1, 2, 3, 497.1
    • Table 4. Comparison with state-of-the-art methods on the NTU-RGB+D dataset

      View table
      View in Article

      Table 4. Comparison with state-of-the-art methods on the NTU-RGB+D dataset

      方法CS精度/%CV精度/%
      Lie-Group[2]50.152.8
      TCN[23]74.383.1
      ST-GCN[9]86.894.2
      AS-GCN[14]86.894.2
      2s-AGCN[13]88.595.1
      SGN[17]89.094.5
      AGC-LSTM[7]89.295.0
      DGNN[24]89.996.1
      Res-GCN[11]90.096.0
      SGCN[16]90.196.2
      MHCN91.297.1
    • Table 5. Comparison with state-of-the-art methods on the Kinetics dataset

      View table
      View in Article

      Table 5. Comparison with state-of-the-art methods on the Kinetics dataset

      方法TOP1精度/%TOP5精度/%
      TCN[23]20.340.0
      ST-GCN[9]30.752.8
      AS-GCN[14]34.856.5
      DGNN[24]36.959.6
      2s-AGCN[13]36.158.7
      Hyper-GCN[18]37.160.0
      SGCN[16]37.160.1
      MHCN38.161.8
    Tools

    Get Citation

    Copy Citation Text

    Xiaofei QIN, Ying ZHAO, Yijie ZHANG, Ruijie DU, Hanwen QIAN, Meng CHEN, Wenqi ZHANG, Xuedian ZHANG. Multiscale hypergraph convolutional network for skeleton-based action recognition[J]. Optical Instruments, 2022, 44(4): 39

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: APPLICATION TECHNOLOGY

    Received: Jan. 6, 2022

    Accepted: --

    Published Online: Oct. 19, 2022

    The Author Email:

    DOI:10.3969/j.issn.1005-5630.2022.004.006

    Topics