Journal of Inorganic Materials, Volume. 35, Issue 9, 959(2020)
[4] W JEON Y, H LEE D. Gas membranes for CO2/CH4 (biogas) separation: a review. Environmental Engineering Science, 32, 71-85(2015).
[5] K DALANE, Z DAI, G MOGSETH. Potential applications of membrane separation for subsea natural gas processing: a review. Journal of Natural Gas Science and Engineering, 39, 101-117(2017).
[6] F HIMMA N, K WARDANI A, N PRASETYA. Recent progress and challenges in membrane-based O2/N2 separation. Reviews in Chemical Engineering, 35, 591-625(2019).
[7] J ZHU, J HOU, A ULIANA. The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes. Journal of Materials Chemistry A, 6, 3773-3792(2018).
[9] T QIU, C KUANG, X ZHENG. On the research and application trends of global gas membrane separation technology-based on analysis of SCI articles and patents in recent 20 years. Chemical Industry & Engineering Progress, 35, 2299-2308(2016).
[10] Y YAMPOLSKII. Polymeric gas separation membranes. Macromolecules, 45, 3298-3311(2012).
[11] L PROZOROVSKA, R KIDAMBI P. State-of-the-art and future prospects for atomically thin membranes from 2D materials. Advanced Materials, 30, 1801179(2018).
[12] M LIU, A GURR P, Q FU. Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry A, 6, 23169-23196(2018).
[15] G WIJMANS J. BAKER R W J. The solution-diffusion model: a review. Journal of Membrane Science, 107, 1-21(1995).
[16] C LI, M MECKLER S, P SMITH Z. Engineered transport in microporous materials and membranes for clean energy technologies. Advanced Materials, 30, 1704953(2018).
[17] J SHEN, G LIU, K HUANG. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture. Angewandte Chemie International Edition, 127, 588-592(2015).
[29] S WANG, S DAI, E JIANG D. Continuously tunable pore size for gas separation
[37] C MERCHANT. DNA translocation through graphene nanopores. Biophysical Journal, 100, 521a(2011).
[42] J YANG, D GONG, G LI. Self-assembly of thiourea-crosslinked graphene oxide framework membranes toward separation of small molecules. Advanced Materials, 30, 1705775(2018).
[45] E YANG, H HAM M, B PARK H. Tunable semi-permeability of graphene-based membranes by adjusting reduction degree of laminar graphene oxide layer. Journal of Membrane Science, 547, 73-79(2018).
[50] M KARUNAKARAN, F VILLALOBOS L, M KUMAR. Graphene oxide doped ionic liquid ultrathin composite membranes for efficient CO2 capture. Journal of Materials Chemistry A, 5, 649-656(2017).
[51] S WANG, Y XIE, G HE. Graphene oxide membranes with heterogeneous nanodomains for efficient CO2 separations. Angewandte Chemie, 129, 14434-14439(2017).
[52] G HUANG, P ISFAHANI A, A MUCHTAR. Pebax/ionic liquid modified graphene oxide mixed matrix membranes for enhanced CO2 capture. Journal of Membrane Science, 565, 370-379(2018).
[53] Q XIN, F MA, L ZHANG. Interface engineering of mixed matrix membrane
[60] Z ZENG, T SUN, J ZHU. An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angewandte Chemie International Edition, 124, 9186-9190(2012).
[61] A GEE M, F FRINDT R, P JOENSEN. Inclusion compounds of MoS2. Materials Research Bulletin, 21, 543-549(1986).
[63] A ACHARI, S SAHANA, M ESWARAMOORTHY. High performance MoS2 membranes: effects of thermally driven phase transition on CO2 separation efficiency. Energy & Environmental Science, 9, 1224-1228(2016).
[64] M OSTWAL, B SHINDE D, X WANG. Graphene oxide- molybdenum disulfide hybrid membranes for hydrogen separation. Journal of Membrane Science, 550, 145-154(2018).
[65] S ZHAO, J XUE, W KANG. Gas adsorption on MoS2 monolayer from first-principles calculations. Chemical Physics Letters, 35-42(2014).
[70] D CHEN, W WANG, W YING. CO2-philic WS2 laminated membranes with a nanoconfined ionic liquid. Journal of Materials Chemistry A, 6, 16566-16573(2018).
[71] M ALHABEB, K MALESKI, B ANASORI. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2T
[81] P LU, Y LIU, T ZHOU. Recent advances in layered double hydroxides (LDHs) as two-dimensional membrane materials for gas and liquid separations. Journal of Membrane Science, 567, 89-103(2018).
[82] W KIM T, M SAHIMI, T TSOTSIS T. Preparation of hydrotalcite thin films using an electrophoretic technique. Industrial & Engineering Chemistry Research, 47, 9127-9132(2008).
[83] W KIM T, M SAHIMI, T TSOTSIS T. The preparation and characterization of hydrotalcite thin films. Industrial & Engineering Chemistry Research, 48, 5794-5801(2009).
[90] P ZHANG H, W HU, A DU. Doped phosphorene for hydrogen capture: a DFT study. Applied Surface Science, 433, 249-255(2018).
[91] P ZHANG H, A DU, B SHI Q. Adsorption behavior of CO2 on pristine and doped phosphorenes: a dispersion corrected DFT study. Journal of CO2 Utilization, 24, 463-470(2018).
Get Citation
Copy Citation Text
Liuxin YANG, Wenhua LUO, Changan WANG, Chen XU.
Category: REVIEW
Received: Oct. 28, 2019
Accepted: --
Published Online: Mar. 3, 2021
The Author Email: XU Chen (chenxuacademic@163.com)