Journal of the Chinese Ceramic Society, Volume. 53, Issue 3, 718(2025)

High-Temperature Insulating Materials Tolerant to Water: Preparation, Properties and Applications

JIAN Yang, JIANG Yonggang*, FENG Junzong, LI Liangjun, HU Yijie, and FENG Jian
Author Affiliations
  • Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aero-space Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • show less
    References(55)

    [1] [1] STEYER T E. Shaping the future of ceramics for aerospace applications[J]. Int J Appl Ceram Technol, 2013, 10(3): 389-394.

    [2] [2] DONG X, SUI G F, YUN Z Q, et al. Effect of temperature on the mechanical behavior of mullite fibrous ceramics with a 3D skeleton structure prepared by molding method[J]. Mater Des, 2016, 90: 942-948.

    [3] [3] ZHANG J, DONG X, HOU F, et al. Effects of fiber length and solid loading on the properties of lightweight elastic mullite fibrous ceramics[J]. Ceram Int, 2016, 42(4): 5018-5023.

    [4] [4] HEADLEY A J, HILEMAN M B, ROBBINS A S, et al. Thermal conductivity measurements and modeling of ceramic fiber insulation materials[J]. Int J Heat Mass Transf, 2019, 129: 1287-1294.

    [5] [5] BHEEKHUN N, ABU TALIB A R, HASSAN M R. Aerogels in aerospace: An overview[J]. Adv Mater Sci Eng, 2013, 2013: 406065.

    [7] [7] LONG X, WEI X B, HU M, et al. Anisotropic and high-strength SiO2/cellulose nanofiber composite aerogel with thermal superinsulation and superhydrophobicity[J]. Ceram Int, 2023, 49(17): 28621-28628.

    [8] [8] LAKATOS A, SZODRAI F. Measurements of the thermal conductivities of some commonly used insulating materials after wetting[J]. Environ Eng Manag J, 2014, 13(11): 2881-2886.

    [9] [9] LIU Y C, ZHENG P P, WU H J, et al. Preparation and dynamic moisture adsorption of fiber felt/silica aerogel composites with ultra-low moisture adsorption rate[J]. Constr Build Mater, 2023, 363: 129825.

    [10] [10] LIU Y C, WU H J, ZHANG Y H, et al. Structure characteristics and hygrothermal performance of silica aerogel composites for building thermal insulation in humid areas[J]. Energy Build, 2020, 228: 110452.

    [11] [11] LAKATOS . Investigation of the moisture induced degradation of the thermal properties of aerogel blankets: Measurements, calculations, simulations[J]. Energy Build, 2017, 139: 506-516.

    [12] [12] HOSEINI A, BAHRAMI M. Effects of humidity on thermal performance of aerogel insulation blankets[J]. J Build Eng, 2017, 13: 107-115.

    [13] [13] FORGCS A, PAPP V, PAUL G, et al. Mechanism of hydration and hydration induced structural changes of calcium alginate aerogel[J]. ACS Appl Mater Interfaces, 2021, 13(2): 2997-3010.

    [14] [14] XIE G N, QI W, ZHANG W H, et al. Optimization design and analysis of multilayer lightweight thermal protection structures under aerodynamic heating conditions[J]. J Therm Sci Eng Appl, 2013, 5(1): 011011.

    [17] [17] ROBERT A. DICHIARA J C C. METHOD OF MAKING A PERMEABLECERAMIC TILE INSULATION[P]. US Patent, 6613255B2. 2003-09-02.

    [18] [18] SOMASUNDARAM S, PILLAI A M, RAJENDRA A, et al. High emittance black nickel coating on copper substrate for space applications[J]. J Alloys Compd, 2015, 643: 263-269.

    [19] [19] HE D L, OU D B, GAO H, et al. Thermal insulation and anti-vibration properties of MoSi2-based coating on mullite fiber insulation tiles[J]. Ceram Int, 2022, 48(2): 1844-1850.

    [21] [21] JAMES C. FLETCHER J C F R. Two-Component Ceramic Coatingfor Silica Insulation[P]. US Patent, 3953646. 1976-04-27.

    [22] [22] James C. Fletcher, Alexander Pechman Robert M. Three-component ceramic coating for silica insulation[P]. US Patent, 3955034. 1976-05-04.

    [23] [23] JAMES C F D B L. Reaction Cured Glass and Glass Coatings[P]. US Patent. 4093771. 1978-06-30.

    [24] [24] STEWART D, LEISER D. Characterization of the thermal conductivity for Advanced Toughened Uni-piece Fibrous Insulations[C]//28th Thermophysics Conference. Orlando, FL. Reston, Virginia: AIAA, 1993: 2755.

    [25] [25] HURWITZ F I. Thermal Protection Systems (TPSs)[M]. Cleveland: John Wiley & Sons, Ltd., 2010: 1-5.

    [26] [26] STEWART D A, LEISER D B, DIFIORE R R, et al. High efficiency tantalum-based ceramic composite structures[P]. US Patent, 7767305. 2010-08-03.

    [31] [31] SHAO G F, WU X D, CUI S, et al. High emissivity MoSi2-ZrO2-borosilicate glass multiphase coating with SiB6 addition for fibrous ZrO2 ceramic[J]. Ceram Int, 2016, 42(7): 8140-8150.

    [33] [33] YANG T, LIU S Q. Li2O-Al2O3-SiO2 glass-ceramic coating on a porous silica ceramic substrate[J]. J Alloys Compd, 2014, 600: 51-54.

    [35] [35] GUO J Y, SU L J, WU C J, et al. Performance comparison of aerospace high-temperature resistant ceramic fiber felt[J]. Mater Sci Forum, 2021, 1036: 168-174.

    [37] [37] PENG Y, XIE Y S, WANG L, et al. High-temperature flexible, strength and hydrophobic YSZ/SiO2 nanofibrous membranes with excellent thermal insulation[J]. J Eur Ceram Soc, 2021, 41(2): 1471-1480.

    [38] [38] MURILLO L, RIVERO P J, SANDA X, et al. Antifungal activity of chitosan/poly(ethylene oxide) blend electrospun polymeric fiber mat doped with metallic silver nanoparticles[J]. Polymers, 2023, 15(18): 3700.

    [39] [39] CHEN J, LI N, JIN N S, et al. Metal ions-doped electrospinning nanofiber films with changeable hydrophobic surface and adjustable tensile properties[J]. Colloids Surf A Physicochem Eng Aspects, 2022, 652: 129876.

    [40] [40] DOTTS R L, MARAIA R J, JAMES A S A O S, et al. THERMAL INSULATION PROTECTIONMEANS[P]. US Patent, 4151800.1979.

    [42] [42] GUO M, DING B, LI X H, et al. Amphiphobic nanofibrous silica mats with flexible and high-heat-resistant properties[J]. J Phys Chem C, 2010, 114(2): 916-921.

    [43] [43] HUA Y, DONG T. Multi-functional flame-retardant superhydrophobic ceramic fiber felt: Oil/Water mixture separation and oil mist interception[J]. Colloids Surf A Physicochem Eng Aspects, 2021, 629: 127454.

    [44] [44] HUANG H, YAN X J, JIN X Y, et al. Flexible and interlocked quartz fibre reinforced dual polyimide network for high-temperature thermal protection[J]. J Mater Chem A, 2023, 11(18): 9931-9941.

    [48] [48] MINER M R, HOSTICKA B, NORRIS P M. The effects of ambient humidity on the mechanical properties and surface chemistry of hygroscopic silica aerogel[J]. J Non Cryst Solids, 2004, 350: 285-289.

    [49] [49] MENG F H, LIU J, RICHARDS R F. Effect of water vapor on the thermal resistance between amorphous silica nanoparticles[J]. J Appl Phys, 2018, 124(5): 054303: 1-12.

    [50] [50] WAGH P B, INGALE S V. Comparison of some physico-chemical properties of hydrophilic and hydrophobic silica aerogels[J]. Ceram Int, 2002, 28(1): 43-50.

    [52] [52] LU Y R, LIU Z H, LI X D, et al. Development of water-based thermal insulation paints using silica aerogel made from incineration bottom ash[J]. Energy Build, 2022, 259: 111866.

    [53] [53] JENSEN K I, SCHULTZ J M, KRISTIANSEN F H. Development of windows based on highly insulating aerogel glazings[J]. J Non Cryst Solids, 2004, 350: 351-357.

    [54] [54] WU X D, ZHONG K, DING J, et al. Facile synthesis of flexible and hydrophobic polymethylsilsesquioxane based silica aerogel via the co-precursor method and ambient pressure drying technique[J]. J Non Cryst Solids, 2020, 530: 119826.

    [55] [55] ZHANG J Y, KONG Y, JIANG X, et al. Synthesis of hydrophobic silica aerogel and its composite using functional precursor[J]. J Porous Mater, 2020, 27(1): 295-301.

    [56] [56] WANG S Y, ZHU Z X, ZHONG Y, et al. Comparative studies on the physicochemical properties of in situ hydrophobic silica aerogels by ambient pressure drying method[J]. J Porous Mater, 2023, 30(6): 2043-2055.

    [57] [57] ZHAO H Q, LIU J W, DONG M, et al. High-temperature stable and hydrophobic boron-nitride-modified silica aerogels for heat insulation materials[J]. Heat Mass Transf, 2021, 57(11): 1807-1814.

    [58] [58] WANG J, ZHAO D, SHANG K, et al. Ultrasoft gelatin aerogels for oil contaminant removal[J]. J Mater Chem A, 2016, 4(24): 9381-9389.

    [60] [60] TONG Z W, ZHANG B J, YU H J, et al. Si3N4 nanofibrous aerogel with in situ growth of SiOx coating and nanowires for oil/water separation and thermal insulation[J]. ACS Appl Mater Interfaces, 2021, 13(19): 22765-22773.

    [61] [61] RAO A V, KULKARNI M M, AMALNERKAR D P, et al. Surface chemical modification of silica aerogels using various alkyl-alkoxy/chloro silanes[J]. Appl Surf Sci, 2003, 206(1/4): 262-270.

    [62] [62] SANZ-MORAL L M, RUEDA M, NIETO A, et al. Gradual hydrophobic surface functionalization of dry silica aerogels by reaction with silane precursors dissolved in supercritical carbon dioxide[J]. J Supercrit Fluids, 2013, 84: 74-79.

    [63] [63] SHI B L, ZHOU Z L, CHEN Y, et al. Preparation and properties of hydrophobic and highly transparent SiO2 aerogels[J]. Ceram Int, 2023, 49(16): 27597-27603.

    [64] [64] ZHAO C, LI Y K, YE W G, et al. Performance regulation of silica aerogel powder synthesized by a two-step Sol-gel process with a fast ambient pressure drying route[J]. J Non Cryst Solids, 2021, 567: 120923.

    [66] [66] AN L, WANG J Y, PETIT D, et al. An all-ceramic, anisotropic, and flexible aerogel insulation material[J]. Nano Lett, 2020, 20(5): 3828-3835.

    [67] [67] WU X X, LI Z, JOAO G, et al. Reducing the flammability of hydrophobic silica aerogels by tailored heat treatment[J]. J Nanopart Res, 2020, 22(4): 83.

    [71] [71] WANG S, SU X L, ZHENG W J, et al. Study on preparation of SiO2/PTFE aerogel-like materials via atmospheric drying and their thermal insulation performance[J]. J Sol Gel Sci Technol, 2024, 109(1): 204-214.

    [72] [72] ZHAO Y, LI Y, ZHANG R B. Silica aerogels having high flexibility and hydrophobicity prepared by sol-gel method[J]. Ceram Int, 2018, 44(17): 21262-21268.

    [73] [73] DONG S L, MACIEJEWSKA B, MILLAR R, et al. 3D Electrospinning of Al2O3/ZrO2 fibrous aerogels for multipurpose thermal insulation[J]. Adv Compos Hybrid Mater, 2023, 6(5): 186.

    [74] [74] LI M M, CHEN X, LI X T, et al. Controllable strong and ultralight aramid nanofiber-based aerogel fibers for thermal insulation applications[J]. Adv Fiber Mater, 2022, 4(5): 1267-1277.

    [75] [75] MA W C, MA Z, CAI Y F, et al. Elastic aerogel with tunable wettability for self-cleaning electronic skin[J]. ACS Mater Lett, 2020, 2(12): 1575-1582.

    [76] [76] LIU S J, WU X D, LI Y H, et al. Hydrophobic in situ SiO2-TiO2 composite aerogel for heavy oil thermal recovery: Synthesis and high temperature performance[J]. Appl Therm Eng, 2021, 190: 116745.

    Tools

    Get Citation

    Copy Citation Text

    JIAN Yang, JIANG Yonggang, FENG Junzong, LI Liangjun, HU Yijie, FENG Jian. High-Temperature Insulating Materials Tolerant to Water: Preparation, Properties and Applications[J]. Journal of the Chinese Ceramic Society, 2025, 53(3): 718

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 29, 2024

    Accepted: Mar. 10, 2025

    Published Online: Mar. 10, 2025

    The Author Email: Yonggang JIANG (jygemail@nudt.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240568

    Topics