Laser & Optoelectronics Progress, Volume. 59, Issue 19, 1914006(2022)

Optimization and Laser Selective Melting for Lattice Structure of Heat Exchanger

Jiayu Liang*, Wenyang Zhang, Wei Liu, and Bingqing Chen
Author Affiliations
  • D Research and Engineering Technology Center, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
  • show less
    Figures & Tables(17)
    Morphology of 316L stainless steel powder for laser selective melting of lattice structures
    Simple cubic lattice structures with different characteristic dimensions formed by laser selective melting. (a) Face thickness is 0.1 mm; (b) face thickness is 0.3 mm
    Four different lattice unit cell structures. (a) 1×1×1; (b) 2×2×2; (c) 4×4×4; (d) 8×8×8
    Filling schematic diagrams with different numbers of lattice structures. (a) 1×1×1; (b) 2×2×2; (c) 4×4×4; (d) 8×8×8
    Comparison of heat exchange structure. (a) Traditional plate-fin heat exchange structure; (b) lattice heat exchange structure
    Variation of heat exchange efficiency with lattice configuration and density
    Lattice unit cell structure with high heat exchange efficiency
    Lattice structure models with different densities. (a) 8 mm×8 mm×8 mm; (b) 5 mm×5 mm×5 mm; (c) 4 mm×4 mm×4 mm
    316L stainless steel lattice structures formed by laser selective melting. (a) 8 mm×8 mm×8 mm; (b) 5 mm×5 mm×5 mm; (c) 4 mm×4 mm×4 mm
    CT 3D images of 316L stainless steel lattice structures formed by laser selective melting. (a) 8 mm×8 mm×8 mm; (b) 5 mm×5 mm×5 mm; (c) 4 mm×4 mm×4 mm
    • Table 1. Processing parameters of laser selective melting of 316L stainless steel lattice structures

      View table

      Table 1. Processing parameters of laser selective melting of 316L stainless steel lattice structures

      ItemParameter
      Scanning strategy

      Layered rotary scanning

      (angle between the layers 67°)

      Laser power /W285
      Scanning speed /(mm·min-1960
      Spot diameter /mm0.08
      Thickness /mm0.04
      Scanning interval /mm0.1
    • Table 2. CT scanning parameters of 316L stainless steel lattice structures

      View table

      Table 2. CT scanning parameters of 316L stainless steel lattice structures

      ItemParameter
      Tube voltage /kV160
      Tube current /μA100
      Integral time /ms334
      Resolution ratio /μm10
    • Table 3. Properties of 316L stainless steel powder for laser selective melting of lattice structures

      View table

      Table 3. Properties of 316L stainless steel powder for laser selective melting of lattice structures

      ItemPower property
      Chemical component /%Standard:GB/T 20878 grades and chemical composition of stainless steel and heat resistant steel
      ElementStandardMeasuredElementStandardMeasured
      FeBal.Bal.P≤0.0450.0110
      Cr16~1817.31S≤0.0300.0070
      Ni10~1411.31C≤0.0300.0110
      Mo2~32.66O/0.0560
      Mn≤2.01.51N/0.0835
      Si≤1.00.62//
      Size distribution /μmStandard:GB/T 19077 laser diffraction method
      D10D50D90
      21.832.748.8
      Degree of sphericity /%Image method
      90.3
      Hall velocity /[s·(50 g)-1Standard:GB/T 1482 metallic powders-determination of fluidity
      18
      Apparent density /(g·cm-3Standard:GB/T 1479.1 funnel method
      4.18
      Tap density /(g·cm-3Standard:GB/T 5162 determination of tap density of metals
      4.76
      MorphologyGray,dry,and no visible inclusions
    • Table 4. Size parameters of simple cubic lattice structures

      View table

      Table 4. Size parameters of simple cubic lattice structures

      Lattice typeCharacteristic dimensions
      Single cell sizeBar diameter /mmFace thickness /mm
      Simple cubic10 mm×10 mm×10 mm0.10.1
      0.2
      0.3
      0.4
      0.5
      0.7
      0.10.3
      0.2
      0.3
      0.4
      0.5
      0.7
    • Table 5. Heat exchange efficiency of lattice structures with different configurations and densities

      View table

      Table 5. Heat exchange efficiency of lattice structures with different configurations and densities

      Numbers of lattice structuresHeat exchange efficiency /(m2·m-3
      Type 1Type 2Type 3Type 4
      1×1×1496.876542.323546.953532.368
      2×2×2731.252911.883842.8971030.399
      4×4×41200.0061694.7321441.2382025.871
      8×8×82137.5693297.6032579.4033991.598
    • Table 6. CT test results of heat exchange surface of 316L lattice structures

      View table

      Table 6. CT test results of heat exchange surface of 316L lattice structures

      MaterialConfigurationHeat exchange surface /mm2
      316L stainless steelConfiguration(1)5437
      Configuration(2)9120
      Configuration(3)11321
    • Table 7. Comparison of simulation values and CT test results of heat exchange efficiency of lattice structures

      View table

      Table 7. Comparison of simulation values and CT test results of heat exchange efficiency of lattice structures

      MaterialConfigurationSimulation value /(m2·m-3CT test results /(m2·m-3Deviation /%
      316L stainless steelConfiguration(1)669.800679.6001.5
      Configuration(2)1019.3551140.00011.8
      Configuration(3)1270.1481415.12511.4
    Tools

    Get Citation

    Copy Citation Text

    Jiayu Liang, Wenyang Zhang, Wei Liu, Bingqing Chen. Optimization and Laser Selective Melting for Lattice Structure of Heat Exchanger[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1914006

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Lasers and Laser Optics

    Received: Aug. 19, 2021

    Accepted: Oct. 19, 2021

    Published Online: Sep. 23, 2022

    The Author Email: Liang Jiayu (893413869@qq.com)

    DOI:10.3788/LOP202259.1914006

    Topics