Acta Optica Sinica, Volume. 40, Issue 11, 1124001(2020)

MIM Tunable Plasmonic Filter Embedded with Symmetrical Sector Metal Resonator

Hongyan Yang1,2, Yupeng Chen1, Gongli Xiao3、*, Mengyin Liu1, houquan Liu1, Chuanxin Teng1, Hongchang Deng1, Ming Chen1, Ronghui Xu1,2, Shijie Deng1, and Libo Yuan1
Author Affiliations
  • 1School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
  • 2Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin, Guangxi 541004, China
  • 3Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China
  • show less
    References(37)

    [1] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 424, 824-830(2003).

    [2] Gu B Y. Surface plasmon subwavelength optics: principles and novel effects[J]. Physics, 36, 280-287(2007).

    [3] Tong L M, Xu H X. Surface plasmons: mechanisms, applications and perspectives[J]. Physics, 41, 582-588(2012).

    [4] Yu H K, Liu B D, Wu W L et al. Surface plasmaons enhanced light-matter interactions[J]. Acta Physica Sinica, 68, 149101(2019).

    [5] Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 311, 189-193(2006).

    [6] Ohtsu M, Kobayashi K, Kawazoe T et al. Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields[J]. IEEE Journal of Selected Topics in Quantum Electronics, 8, 839-862(2002).

    [8] Qi Y P, Zhang X W, Zhou P Y et al. Refractive index sensor and filter of metal-insulator-metal waveguide based on ring resonator embedded by cross structure[J]. Acta Physica Sinica, 67, 197301(2018).

    [10] Sun Y H. Research on propagation properties of nano-waveguide based on surface plasmon polaritons[D]. Nanjing: Nanjing University of Posts and Telecommunications(2013).

    [11] Zheng G G, Su W, Chen Y Y et al. Band-stop filters based on a coupled circular ring metal-insulator-metal resonator containing nonlinear material[J]. Journal of Optics, 14, 055001(2012).

    [12] Wang S W, Li Y, Xu Q J et al. A MIM filter based on a side-coupled crossbeam square-ring resonator[J]. Plasmonics, 11, 1291-1296(2016).

    [13] Yang H Y, Li J Q, Xiao G L. Decay and propagation properties of symmetric surface plasmon polariton mode in metal-insulator-metal waveguide[J]. Optics Communications, 395, 159-162(2017).

    [14] Yang H Y, Li J Q, Xiao G L. A highly efficient surface plasmon polaritons excitation achieved with a metal-coupled metal-insulator-metal waveguide[J]. AIP Advances, 4, 127114(2014).

    [15] Zhu B Q, Tsang H K. High coupling efficiency silicon waveguide to metal-insulator-metal waveguide mode converter[J]. Journal of Lightwave Technology, 34, 2467-2472(2016).

    [17] Wang B, Wang G P. Plasmon Bragg reflectors and nanocavities on flat metallic surfaces[J]. Applied Physics Letters, 87, 013107(2005).

    [18] Hosseini A, Massoud Y. A low-loss metal-insulator-metal plasmonic Bragg reflector[J]. Optics Express, 14, 11318-11323(2006).

    [19] Han Z H, Liu L, Forsberg E. Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons[J]. Optics Communications, 259, 690-695(2006).

    [20] Pu M B, Yao N, Hu C G et al. Directional coupler and nonlinear Mach-Zehnder interferometer based on metal-insulator-metal plasmonic waveguide[J]. Optics Express, 18, 21030-21037(2010).

    [21] Kamada S, Okamoto T. El-Zohary S E, et al. Design optimization and fabrication of Mach- Zehnder interferometer based on MIM plasmonic waveguides[J]. Optics Express, 24, 16224-16231(2016).

    [22] Yang B J, Zhou Y J. Wavelength filtering and demultiplexing devices based on ultrathin corrugated MIM waveguides[J]. Journal of Modern Optics, 63, 874-880(2016).

    [23] Azar M T H, Zavvari M, Arashmehr A et al. Design of a high-performance metal-insulator-metal plasmonic demultiplexer[J]. Journal of Nanophotonics, 11, 026002(2017).

    [24] Wang R B. Research on Fano resonance effect and its sensing characteristics in MIM waveguide coupled resonator system[D]. Taiyuan: North University of China(2017).

    [25] Chen J, Li Y D, Chen Z Q et al. Tunable resonances in the plasmonic split-ring resonator[J]. IEEE Photonics Journal, 6, 1-6(2014).

    [27] Mirnaziry S R, Wolff C, Steel M J et al. Lasing in ring resonators by stimulated Brillouin scattering in the presence of nonlinear loss[J]. Optics Express, 25, 23619-23633(2017).

    [28] Zheng G G, Su W, Chen Y Y et al. Band-stop filters based on a coupled circular ring metal-insulator-metal resonator containing nonlinear material[J]. Journal of Optics, 14, 055001(2012).

    [30] Rakhshani M R. Mansouri-Birjandi M A. Dual wavelength demultiplexer based on metal-insulator-metal plasmonic circular ring resonators[J]. Journal of Modern Optics, 63, 1078-1086(2016).

    [33] Yang Y R. Numerical study of plasmonic filter based on metal-insulator-metal waveguide[D]. Nanjing: Nanjing University of Posts and Telecommunications(2016).

    [34] Zhu J H, Huang X G, Tao J et al. Nanometeric plasmonic refractive index senor[J]. Optics Communications, 285, 3242-3245(2012).

    [35] Lin X S, Huang X G. Tooth-shaped plasmonic waveguide filters with nanometeric sizes[J]. Optics Letters, 33, 2874-2876(2008).

    [37] Economou E N. Surface plasmons in thin films[J]. Physical Review, 182, 539(1969).

    Tools

    Get Citation

    Copy Citation Text

    Hongyan Yang, Yupeng Chen, Gongli Xiao, Mengyin Liu, houquan Liu, Chuanxin Teng, Hongchang Deng, Ming Chen, Ronghui Xu, Shijie Deng, Libo Yuan. MIM Tunable Plasmonic Filter Embedded with Symmetrical Sector Metal Resonator[J]. Acta Optica Sinica, 2020, 40(11): 1124001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optics at Surfaces

    Received: Jan. 31, 2020

    Accepted: Feb. 27, 2020

    Published Online: Jun. 10, 2020

    The Author Email: Xiao Gongli (xgl.hy@126.com)

    DOI:10.3788/AOS202040.1124001

    Topics