Acta Photonica Sinica, Volume. 50, Issue 4, 111(2021)

Digital Thermo-optic Switch of SOI Waveguide Based on Goos-Hänchen Spatial Shift of Reflected Mode

Zhuo CHEN1, Tiancheng LI2, Degui SUN1、*, Na SUN1, Hongpeng SHANG1, and Chen CHEN1
Author Affiliations
  • 1School of Science, Changchun University of Science and Technology, Changchun30022, China
  • 2Changchun Changguang Yuanchen Microelectronics Technology Co. Ltd, Changchun1300, China
  • show less
    References(31)

    [1] J S ORCUTT, B MOSS, C SUN et al. Open foundry platform for high-performance electronic-photonic integration. Optics Express, 20, 12222-12232(2012).

    [2] M P EARNSHAW, M CAPPUZZO et al. 8 × 8 optical switch matrix using generalized Mach-Zehnder interferometers. IEEE Photonics Technology Letters, 15, 810-812(2003).

    [3] Y ZHA, D G SUN, T G LIU et al. Rearrangeable nonblocking 8 × 8 matrix optical switch based on silica waveguide and extended banyan network. IEEE Photonics Technology Letters, 19, 390-392(2007).

    [4] J V CAMPENHOUT, W M J GREEN, Y A VLASOV. Design of a digital, ultra-broadband electro-optic switch for reconfigurable optical networks-on-chip. Optics Express, 17, 23793(2009).

    [5] D G SUN, Z HU, S ABDUL-MAJID et al. Limitation factor analysis for silicon-on-insulator waveguide Mach–Zehnder interference-based electro-optic switch. Journal of Lightwave Technology, 29, 2592-600(2011).

    [6] M R WATTS, J SUN, C DEROSE et al. Adiabatic thermo-optic Mach-Zehnder switch. Optics Letters, 38, 733-735(2013).

    [7] Y ZHAO, H JIA, Y XIA et al. AS4A, 5(2015).

    [8] Y SHOJI, K KINTAKA, S SUDA et al. Low-crosstalk 2 × 2 thermo-optic switch with silicon wire waveguides. Optics Express, 18, 9071-9075(2010).

    [9] A RYAN, F ALEX, D CHRISTOPHER et al. Wideband silicon-photonic thermo-optic switch in a wavelength-division multiplexed ring network. Optics Express, 22, 8205-8218(2014).

    [10] J XING, Z LI, P ZHOU et al. Nonblocking 4×4 silicon electro-optic switch matrix with push-pull drive. Optics Letters, 38, 3926-3929(2013).

    [11] S KEIJIRO, T MUNEHIRO et al. Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer. Optics Express, 23, 17599-17606(2015).

    [12] L LU, S ZHAO, L ZHOU et al. 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Optics Express, 24, 9295-307(2016).

    [13] D NIKOLOVA, D M CALHOUN, Y LIU et al. Modular architecture for fully non-blocking silicon photonic switch fabric. Microsystems & Nanoengineering, 3, 16071(2017).

    [14] R KRAHENBUHL, M M HOWERTON, J DUBINGER et al. Performance and modeling of advanced Ti: LiNbO3 digital optical switches. Journal of Lightwave Technology, 20, 92-99(2002).

    [15] W YUAN, S KIM, W H STEIER et al. Electrooptic polymeric digital optical switches (DOSs) with adiabatic couplers. IEEE Photonics Technology Letters, 17, 2568-2570(2005).

    [16] K SOLEHMAINEN, M KAPULAINEN, M HARJANNE et al. Adiabatic and multimode interference couplers on silicon-on-insulator. IEEE Photonics Technology Letters, 18, 2287-2289(2006).

    [17] D G SUN, Z LIU, Y ZHA et al. Thermo-optic waveguide digital optical switch using symmetrically coupled gratings. Optics Express, 13, 5463-5471(2005).

    [18] T J SEOK, N QUACK, S HAN et al. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica, 3, 64(2016).

    [19] D G SUN. A proposal for digital electro-optic switches with free-carrier dispersion effect and Goos-Hanchen shift in silicon-on-insulator waveguide corner mirror. Journal of Applied Physics, 114, 4502(2013).

    [20] D G SUN. Manipulation of the coherent spatial and angular shifts of Goos-Hnchen effect to realize the digital optical switch in silicon-on-insulator waveguide corner. Journal of Applied Physics, 120, 333-703(2016).

    [21] A JOUSHAGHANI, B A KRUGER, S PARADIS et al. Sub-volt broadband hybrid plasmonic-vanadium dioxide switches. Applied Physics Letters, 102, 061101(2013).

    [22] C C CHAN, T TAMIR. Angular shift of a Gaussian beam reflected near the Brewster angle. Optics Letters, 10, 378-380(1985).

    [23] R SIMON, T TAMIR. Nonspecular phenomena in partly coherent beams reflected by multilayered structures. Journal of the Optical Society of America A, 3, 558-565(1986).

    [24] L B MüLLER, D THARANGA, A STAHLHOFEN et al. Nonspecular shifts of microwaves in partial reflection. Europhysics Letters, 73, 526-532(2006).

    [25] A AIELLO, M MERANO, J P WOERDMAN. Duality between spatial and angular shift in optical reflection. Physical Review A, 80, 061801(2009).

    [26] T CHU, H YAMADA, S ISHIDA et al. Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides. Optics Express, 13, 10109-10114(2005).

    [27] A DENSMORE, S JANZ, R MA et al. Compact and low power thermo-optic switch using folded silicon waveguides. Optics Express, 17, 10457-10465(2009).

    [28] P SUN, R M REANO. Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides. Optics Express, 18, 8406-8411(2010).

    [29] H AHARONI, M D PLESSIS. The spatial distribution of light from silicon LEDs. Sensors and Actuators A: Physical, 57, 233-237(1996).

    [30] K XU. Integrated silicon directly modulated light source using p-well in standard CMOS technology. IEEE Sensors Journal, 16, 6184-6191(2016).

    [31] X KAIKAI. Silicon MOS optoelectronic micro‐nano structure based on reverse‐biased PN junction. Physica Status Solidi A, 216, 1800868(2019).

    Tools

    Get Citation

    Copy Citation Text

    Zhuo CHEN, Tiancheng LI, Degui SUN, Na SUN, Hongpeng SHANG, Chen CHEN. Digital Thermo-optic Switch of SOI Waveguide Based on Goos-Hänchen Spatial Shift of Reflected Mode[J]. Acta Photonica Sinica, 2021, 50(4): 111

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: Nov. 16, 2020

    Accepted: Dec. 24, 2020

    Published Online: May. 11, 2021

    The Author Email: SUN Degui (sundg@cust.edu.cn)

    DOI:10.3788/gzxb20215004.0423001

    Topics