Acta Photonica Sinica, Volume. 39, Issue 12, 2134(2010)
Determination of Cr and Ba in Soil Using Laser Induced Breakdown Spectroscopy with Artificial Neural Networks
[1] [1] PASQUINI C, CORTEZ J, SILVA L M C, et al. Laser induced breakdown spectroscopy[J]. Journal of the Brazilian Chemical Society, , 2007, 18(3): 463-512.
[2] [2] HARMON R S, DELUCIA F C, MCMANUS C E, et al. Laser-induced breakdown spectroscopy-An emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications[J]. Applied Geochemistry, 2006, 21(5): 730-747.
[3] [3] CORSI M, CRISTOFORETTI G, HIDALGO M, et al. Double pulse, calibration-free laser-induced breakdown spectroscopy: A new technique for in situ standard-less analysis of polluted soils[J]. Applied Geochemistry, 2006, 21(5): 748-755.
[4] [4] CHINNI R C, CREMERS D A, RADZIEMSKI L J, et al. Detection of uranium using laser-induced breakdown spectroscopy[J]. Applied Spectroscopy, 2009, 63(11): 1238-1250.
[5] [5] YAMAMOTO K Y, CREMERS D A, FOSTER L E, et al. Laser-induced breakdown spectroscopy analysis of solids using a long-pulse (150 ns) Q-switched Nd∶YAG laser[J]. Applied Spectroscopy, 2005, 59(9): 1082-1097.
[6] [6] HUSSAIN T, GONDAL M A. Monitoring and assessment of toxic metals in Gulf War oil spill contaminated soil using laser-induced breakdown spectroscopy[J]. Environmental Monitoringtor and Assessment, 2008, 136(1-3): 391-399.
[7] [7] CHEN Jin-zhong, SHI Jin-chao, ZHANG Xiao-ping. Quantitative analysis of Fe and Ti elements in soil samples using laser-induced breakdown spectroscopy[J]. Applied Laser, 2007, 27(1): 33-36.
[8] [8] ZHOU Wei-dong, LI Ke-xue, SHEN Qin-mei, et al. Optical emission enhancement using laser ablation combined with fast pulse discharge[J]. Opt Express, 2010, 18(3): 2573-2578.
[9] [9] EGAN W J, ANGEL S M, MORGAN S L. Rapid optimization and minimal complexity in computational neural network multivariate calibration of chlorinated hydrocarbons using Raman spectroscopy[J]. Journal of Chemometrics,, 2001, 15(1): 29-48.
[10] [10] FANG Li-min, FENG Ai-ming, LIN Min. Rapid prediction of total organic carbon content and CEC in soil using visible/near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2010, 30(2): 327-330.
[11] [11] FERREIRA E C, MILORI D M B P, FERREIRA E J, et al. Artificial neural network for Cu quantitative determination in soil using a portable Laser Induced Breakdown Spectroscopy system[J]. Spectrochimica Acta Part B, 2008, 63(10): 1216-1220.
[12] [12] BENARDOS P G, VOSNIAKOS G C. Optimizing feedforward artificial neural network architecture[J]. Engineering Applications of Artificial Intelligence, 2007, 20(3): 365-382.
[13] [13] LEK S, PARK Y S. Encyclopedia of ecology[M]. Holland: Elsevier, 2008: 237-245.
[14] [14] CHAI Bing-hua, ZHAO Da-zun, LIAO Ning-fang, et al. Color appearance model based on artificial neural network[J]. Optical Technique, 2005, 31(1): 127-129.
[15] [15] MOTTO-ROS V, KOUJELEV A S, OSINSKI G R, et al. Quantitative multi-elemental laser-induced breakdown spectroscopy using artificial neural networks[J]. Journal of the European Optical Society-Rapid publications, 2008, 3: 08011(1)-08011(5).
[16] [16] OH S Y, YUEH F Y, SINGH J P. Quantitative analysis of tin alloy combined with artificial neural network prediction[J]. Appl Opt, 2010, 49(13): C36-C41.
Get Citation
Copy Citation Text
SHEN Qin-mei, ZHOU Wei-dong, LI Ke-xue. Determination of Cr and Ba in Soil Using Laser Induced Breakdown Spectroscopy with Artificial Neural Networks[J]. Acta Photonica Sinica, 2010, 39(12): 2134
Received: Aug. 10, 2010
Accepted: --
Published Online: Jan. 26, 2011
The Author Email: Wei-dong ZHOU (wdzhou@zjnu.cn)
CSTR:32186.14.