Electro-Optic Technology Application, Volume. 28, Issue 6, 33(2022)
Research Progress of GaSb-based Diode Laser
[1] [1] KOBAYASHI N, HORIKOSHI Y, UEMURA C. Room temperature operation of the InGaAsSb/AlGaAsSb DH laser at 1.8 μm wavelength[J]. Japanese Journal of Applied Physics, 1980, 19(1): L30-L32.
[2] [2] CANEAU C, SRIVASTAVA AK, DENTAL AG, et al. Room-temperature GaInAsSb/AlGaAsSb DH injection lasers at 2.2 μm[J]. Electronics Letters, 1985.
[3] [3] CHIU T H, TSANG W T, DITZENBERGER J A , et al. Room-temperature operation of InGaAsSb/AlGaSb double heterostructure lasers near 2.2 μm prepared by molecular beam epitaxy[J]. Applied Physics Letters, 1986, 49(17): 1051-1052.
[4] [4] WANG C A, CHOI H K. OMVPE growth of GaInAsSb/AlGaAsSb for quantum-well diode lasers[J]. Journal of Electronic Materials, 1997, 26(10): 1231-1236.
[5] [5] KROEMER H. A proposed class of hetero-junction injection lasers[J]. Proceedings of the IEEE, 1963, 51(12): 1782-1783.
[6] [6] CHOI H K, EGLASH S J. High-power multiple-quantum-well GalnAsSb/AIGaAsSb diode lasers emitting at 2.1 μm with low threshold current density[J]. Applied Physics Letters, 1992, 61(10): 1154-1156.
[7] [7] GARBUZOV D Z, MARTINELLI R U, LEE H , et al. Ultralow-loss broadened-waveguide high-power 2 μm AlGaAsSb/InGaAsSb/GaSb separate-confinement quantum-well lasers[J]. Applied Physics Letters, 1996, 69(14): 2006-2008.
[8] [8] GARBUZOV D Z, MARTINELLI R U, LEE H, et al. 4 W quasi-continuous-wave output power from 2 μm AlGaAsSb/InGaAsSb single-quantum-well broadened waveguide laser diodes[J]. Applied Physics Letters, 1997, 70(22): 2931-2933.
[9] [9] RATTUNDE M, MERMELSTEIN C, SCHMITZ J, et al. Comprehensive modeling of the electro-optical-thermal behavior of (AlGaIn)(AsSb)-based 2.0 μm diode lasers[J]. Applied Physics Letters, 2002, 80(22): 4085-4087.
[10] [10] RATTUNDED M, SCHMITZ J, KAUFEL G, et al. GaSb-based 2.X μm quantum-well diode lasers with low beam divergence and high output power[J]. Applied Physics Letters, 2006, 88(8): 2931.
[11] [11] YANG R Q. Infrared laser based on inter sub-band transitions in quantum wells[J]. Super-lattices and Microstructures, 1995, 17(1): 77-77.
[12] [12] KIM M, CANEDY C L, BEWLEY W W, et al. Inter-band cascade laser emitting at 3.75 in continuous wave above room temperature [J]. Appl Phys Lett, 2008, 92(19): 191110.
[13] [13] BEWLEY W W, KIM C S, CANEDY C L, et al. High-power CW performance of 7-stage inter-band cascade lasers [J]. Opt Express, 2014, 22(7): 7702-7710.
[14] [14] SHTERENGAS L, LIANG R, KIPSHIDZE G, et al. Cascade type-I quantum well diode lasers emitting 960 mW near 3 μm [J]. Applied Physics Letters, 2014, 105(16): 161112.
[15] [15] HOSODA T, FENG T, SHTERENGAS L, et al. High power cascade diode lasers emitting near 2 μm[J]. Applied Physics Letters, 2016, 108(13): 131109.
[16] [16] SOIBEL A, WRIGHT M W, FARR W H, et al. Mid-infrared inter-band cascade laser for free space optical communication[J]. IEEE Photonics Technology Letters, 2010, 22(2): 121-123.
[17] [17] MIKOAJCZYK J, WEIH R, MOTYKA M. Optical wireless link operated at the wavelength of 4.0 m with commercially available inter-band cascade laser[J]. Sensors, 2021, 21(12): 4102.
Get Citation
Copy Citation Text
CHEN Yihang, YANG Chengao, WANG Tianfang, ZHANG Yu, XU Yingqiang, NIU Zhichuan. Research Progress of GaSb-based Diode Laser[J]. Electro-Optic Technology Application, 2022, 28(6): 33
Category:
Received: Oct. 23, 2021
Accepted: --
Published Online: Mar. 13, 2023
The Author Email:
CSTR:32186.14.