Optics and Precision Engineering, Volume. 28, Issue 12, 2745(2020)
E xtraction of flu orescen t im age in form ation from cellu lar d igital P C R m icroarray
[1] [1] BASU A S. Digital assays part I: partitioning statistics and digital PCR[J]. SLAS Technology, 2017, 22(4): 369-386.
[2] [2] SREEJITH K R, OOIC H, JIN J, et al.. Digital polymerase chain reaction technology-recent advanc. es and future perspectives[J]. Lab on a Chip, 2018, 18(24): 3717-3732.
[3] [3] VOGELSTEIN B, KINZLER K W. Digital PCR[J]. Proceedings of the National Academy of Sci. ences of the United States of America, 1999, 96(16): 9236-9241.
[4] [4] MAJUMDAR N, BANERJEE S, PALLAS M, et al.. Poisson plus quantification for digital PCR sys. tems[J]. Scientific Reports, 2017, 7: 9617.
[8] [8] FOUAD, ISLAM, et al.. Automatic and accurate segmentation of gridded cDNA microarray images using different[J]. Advances in Computing, 2014, 4(2): 41-54.
[9] [9] WANG Z Y, HUANG X Q, CHENG Z Q. Auto. matic spot identification method for high throughput surface plasmon resonance imaging analysis[J]. Bio. sensors, 2018, 8(3): 85.
[10] [10] SHAO G F, LI D Y, ZHANG J F, et al.. Auto. matic microarray image segmentation with cluster. ing-based algorithms[J]. PLoS One, 2019, 14(1): e0210075.
[11] [11] SAEID M M, NOSSAIR Z B, SALEH MA. A fully automated spot detection approach for cDNA microarray images using adaptive thresholds and multi-resolution analysis[J]. IEEE Access, 2019, 7: 80380-80389.
[12] [12] NGUYEN H N, PAVEAU V, CAUCHOIS C, et al.. ATMAD: robust image analysis for Auto. matic Tissue MicroArray De-arraying[J]. BMC Bioinformatics, 2018, 19(1): 148.
[13] [13] LI T J, SHAO G F, SUN Y, et al.. Contrast en. hancement for cDNA microarray image based on fourth-order moment[J]. Signal, Image and Vid. eo Processing, 2018, 12(6): 1069-1077.
[14] [14] BELEAN B, TEREBES R, BOT A. Low-com. plexity PDE-based approach for automatic microar. ray image processing[J]. Medical & Biological Engineering & Computing, 2015, 53(2): 99-110.
[16] [16] GIANNAKEAS N, KALATZIS F, TSIPOU. RAS M G, et al.. Spot addressing for microarray images structured in hexagonal grids[J]. Computer Methods and Programs in Biomedicine, 2012, 106(1): 1-13.
[17] [17] BAJCSY P. An overview of DNA microarray grid alignment and foreground separation approaches[J]. EURASIP Journal on Advances in Signal Processing, 2006, 2006: 080163.
[18] [18] BALL C A, AWAD I A B, DEMETER J, et al.. The stanford microarray database accommo. dates additional microarray platforms and data for. mats[J]. Nucleic Acids Research, 2005, 33: D580-D582.
[19] [19] GIANNAKEAS N, KALATZIS F, TSIPOU. RASM G, et al.. A generalized methodology for the gridding of microarray images with rectangular or hexagonal grid[J]. Signal, Image and Video Processing, 2016, 10(4): 719-728.
[20] [20] GIANNAKEAS N, FOTIADIS D I. An automat. ed method for gridding and clustering-based seg. mentation of cDNA microarray images[J]. Com. puterized Medical Imaging and Graphics, 2009, 33(1): 40-49.
[21] [21] GALINSKY V L. Automatic registration of micro. array images. II. Hexagonal grid[J]. Bioinformat. ics, 2003, 19(14): 1832-1836.
[22] [22] GALINSKY V L. Automatic registration of micro. array images. I. Rectangular grid[J]. Bioinformat. ics, 2003, 19(14): 1824-1831.
[23] [23] SABERKARI H, SHAMSI M, GHAVIFEKR H B. A shape-independent algorithm for fully-auto. mated gridding of cDNA microarray images[J]. Computers & Electrical Engineering, 2017, 62: 135-150.
[24] [24] KAUR A, SINGH C. Contrast enhancement for cephalometric images using wavelet-based modified adaptive histogram equalization[J]. Applied Soft Computing, 2017, 51: 180-191.
[27] [27] LUNDHOLT B K, SCUDDER K M, PA. GLIARO L. A simple technique for reducing edge effect in cell-based assays[J]. Journal of Biomolec. ular Screening, 2003, 8(5): 566-570.
[28] [28] BAI X Z, ZHOU F G, JIN T. Enhancement of dim small target through modified top-hat transfor. mation under the condition of heavy clutter[J]. Sig. nal Processing, 2010, 90(5): 1643-1654.
Get Citation
Copy Citation Text
LI Shu-li, LI Jin-ze, GUO Zhen, ZHU Wen-yan, ZHOU Lian-qun, ZHANG Zhi-qi. E xtraction of flu orescen t im age in form ation from cellu lar d igital P C R m icroarray[J]. Optics and Precision Engineering, 2020, 28(12): 2745
Category:
Received: May. 7, 2020
Accepted: --
Published Online: Jan. 19, 2021
The Author Email: Lian-qun ZHOU (zhoulq@sibet.ac.cn;张芷齐|zhangzhiqi@sibet.ac.cn)