Study On Optical Communications, Volume. 49, Issue 1, 47(2023)
Random Number Generation by Mode Hopping of VCSEL Using Optical Feedback
[1] Uchida A, Amano K, Inoue M et al. Fast Physical Random Bit Generation with Chaotic Semiconductor Lasers[J]. Nature Photonics, 2, 728-732(2008).
[2] Tang X, Wu Z M, Wu J G et al. Tbits/s Physical Random Bit Generation based on Mutually Coupled Semiconductor Laser Chaotic Entropy Source[J]. Optics Express, 23, 33130-33141(2015).
[3] Li P, Wang Y C, Zhang J Z. All-optical Fast Random Number Generator[J]. Optics Express, 18, 20360-20369(2010).
[4] Williams C R S, Salevan J C, Li X et al. Fast Physical Random Number Generator Using Amplified Spontaneous Emission[J]. Optics Express, 18, 23584-23597(2010).
[5] Li L, Wang A B, Li P et al. Random Bit Generator Using Delayed Self-difference of Filtered Amplified Spontaneous Emission[J]. IEEE Photonics Journal, 6, 2304555(2014).
[6] Xu B J, Chen Z Y, Li Z Y et al. High Speed Continuous Variable Source-independent Quantum Random Number Generation[J]. Quantum Science and Technology, 4, ab0fd9(2019).
[7] Guo H, Tang W, Liu Y et al. Truly Random Number Generation based on Measurement of Phase Noise of a Laser[J]. Physical Review E, 81, 051137(2010).
[8] Qi B, Chi Y M, Lo H K et al. High-speed Quantum Random Number Generation by Measuring Phase Noise of a Single-mode Laser[J]. Optics Letters, 35, 312-314(2010).
[9] Nie Y Q, Huang L L, Liu Y et al. The Generation of 68 Gbit/s Quantum Random Number by Measuring Laser Phase Fluctuations[J]. Review of Scientific Instruments, 86, 063105(2015).
[10] Gabriel C, Wittmann C, Sych D et al. A Generator for Unique Quantum Random Numbers based on Vacuum States[J]. Nature Photonics, 4, 711-715(2010).
[11] Symul T, Assad S M, Lam P K. Real Time Demonstration of High Bit Rate Quantum Random Number Generation with Coherent Laser Light[J]. Applied Physics Letters, 98, 231103.1-231103.3(2011).
[12] Zheng Z Y, Zhang Y C, Huang W N et al. 6 Gbit/s Real-time Optical Quantum Random Number Generator based on Vacuum Fluctuation[J]. The Review of Scientific Instruments, 90, 043105(2019).
[13] Willemsen M B, Khalid M U F, Exter M P et al. Polarization Switching of a Vertical- cavity Semiconductor Laser as a Kramers Hopping Problem[J]. Physical Review Letters, 82, 4815-4818(1999).
[14] Naimee K A, Leyva I, Mariño P et al. Noise Effects in Intrinsic Laser Polarization Switching[J]. Physical Review A, 77, 063803(2008).
[15] Martin-Regalado J, Prati F, Miguel M S et al. Polarization Properties of Vertical-cavity Surface-emitting Lasers[J]. IEEE Journal of Quantum Electronics, 33, 765-783(1997).
[16] Virte M, Panajotov K, Thienpont H et al. Deterministic Polarization Chaos from a Laser Diode[J]. Nature Photonics, 7, 60-65(2013).
[17] Zhong D Z, Xia G Q, Wu Z M et al. Complete Chaotic Synchronization Characteristics of the Linear-polarization Mode of Vertical-cavity Surface-emitting Semiconductor Lasers with Isotropic Optical Feedback[J]. Optics Communications, 281, 1698-1709(2008).
[18] Xie Y Y, Li J C, He C et al. Long-distance Multi-channel Bidirectional Chaos Communication based on Synchronized VCSELs Subject to Chaotic Signal Injection[J]. Optics Communications, 377, 1-9(2016).
[19] Huang C Y, Wang H Y, Wu C H et al. Comparison of High-speed PAM4 and QAM-OFDM Data Transmission Using Single-mode VCSEL in OM5 and OM4 MMF Links[J]. IEEE Journal of Selected Topics in Quantum Electronics, 26, 2903754(2019).
Get Citation
Copy Citation Text
Yu-ling ZHANG, Pu LI, Zhi-qiang XIA, Chao-jie CHEN, Li MA, Bing-jie XU. Random Number Generation by Mode Hopping of VCSEL Using Optical Feedback[J]. Study On Optical Communications, 2023, 49(1): 47
Category: Research Articles
Received: Apr. 30, 2022
Accepted: --
Published Online: Feb. 15, 2023
The Author Email: LI Pu (lipu8603@126.com)