Acta Photonica Sinica, Volume. 50, Issue 5, 1(2021)
Connotation and System of Computational Imaging(Invited)
[1] R LUKAC. Computational photography: methods and application(2011).
[2] Xiaopeng SHAO, Fei LIU, Wei LI等. Latest progress in computational imaging technology and application. Laser & Optoelectronics Progress, 57, 020001(2020).
[3] Yanyan LIU, Yuping DU. Research status and development trend of computational imaging. Electro-Optic Technology Application, 34, 21-24(2019).
[4] Jufeng ZHAO, Guangmang CUI. Computational imaging-design for acquisition of plenoptic visual information. Spacecraft Recovery & Remote Sensing, 40, 1-14(2019).
[5] J N TINSLEY, M I MOLODTSOV, R PREVEDEL et al. Direct detection of a single photon by humans. Nature Communications, 7, 12172(2016).
[6] Y XUE, I G DAVISON, D A BOAS et al. Single-shot 3D wide-field fluorescence imaging with a computational miniature mesoscope. Science Advances, 6(2020).
[7] O FORS, P WULFKEN et al. The Evryscope: the first full-sky gigapixel-scale telescope, 9145, 91450Z(2014).
[8] M O TOOLE, D B LINDELL, G WETZSTEIN. Confocal non-line-of-sight imaging based on the light-cone transform. Nature, 555, 338-341(2018).
[9] J TANIDA, T KUMAGAI, K YAMADA et al. Thin observation module by bound optics (TOMBO): concept and experimental verification. Applied Optics, 40, 1806-1813(2001).
[10] A ADAMS, D E JACOBS, J DOLSON et al. The frankencamera: An experimental platform for computational photography. Communications of the ACM, 55, 90-98(2012).
[12] J WENG, P COHEN, M HERNIOU. Camera calibration with distortion models and accuracy evaluation. IEEE Trans Pattern Anal Mach Intell, 14, 965-980(1992).
[13] Wanqi SHANG, Wenxi ZHANG, Zhou WU等. Three-dimensional measurement system based on full-field heterodyne interferometry. Optics and Precision Engineering, 27, 2097-2104(2019).
[14] Y LIU, H ZHAO, D SHEN et al. Research on snapshot infrared computational spectral imaging technology. Infrared Device and Infrared Technology(2020).
[15] L CAO, H ZHANG, D J BRADY et al. Noise suppression for ballistic-photons based compressive in-line holographic imaging through inhomogeneous medium. Optics Express, 28, 10337-10349(2020).
[16] Fei LIU, Shaojie SUN, Pingli HAN等. Development of underwater polarization imaging technology. Laser & Optoelectronics Progress, 58, 0600001(2021).
[17] Fei LIU, Yazhe WEI, Pingli HAN等. Design of monocentric wide field-of-view and high-resolution computational imaging system. Acta Physica Sinica, 68, 101-110(2019).
[18] Xinquan WANG, Qingmei HUANG, ningfang LIAO等. Image reconstruction for the computed-tomography imaging interferometer. Acta Optica Sinica, 27, 1600-1604(2007).
[19] J ZHANG, C QIAN, J LI et al. Lensfree dynamic super-resolved phase imaging based on active micro-scanning. Optics Letters, 43, 3714(2018).
[20] S ROTTER, S GIGAN. Light fields in complex media: Mesoscopic scattering meets wave control. Reviews of Modern Physics, 89, 015005(2017).
[21] O KATZ, P HEIDMANN, M FINK et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nature Photonics, 8, 784-790(2014).
[22] Y LI, Y XUE, L TIAN. Deep speckle correlation: A deep learning approach toward scalable imaging through scattering media. Optica, 5, 1181-1190(2018).
[23] S K SAHOO, D TANG, C DANG. Single-shot multispectral imaging with a monochromatic camera. Optica, 4, 1209-1213(2017).
[24] Xiangsheng XIE, Yikun LIU, Haowen LIANG等. Speckle correlation imaging: from point spread functions to light field plenoptics. Acta Optica Sinica, 40, 0111004(2020).
[25] Qiang YANG, Liangcai CAO, Guofan JIN. Progress in optical focusing techniques aiming to suppress scattering effect in biomedical tissues. Chinese Journal of Lasers, 42, 0901001(2015).
[26] L WANG, Y WANG, Z LIANG et al. Learning parallax attention for stereo image super-resolution, 12250-12259(2019).
[27] D S JEON, S H BAEK, I CHOI et al. Enhancing the spatial resolution of stereo images using a parallax prior, 1721-1730(2018).
[28] P A SABELHAUS, J E DECKER. An overview of the James Webb space telescope (JWST) project. Optical, 5487, 550-563(2004).
[29] M XIANG, A PAN, Y ZHAO et al. Coherent synthetic aperture imaging for visible remote sensing via reflective Fourier ptychography. Optics Letters, 46, 29-32(2021).
[30] R HEGERL, W HOPPE. Phase evaluation in generalized diffraction (ptychography), 628-629(1972).
[31] G ZHENG, R HORSTMEYER, C YANG. Wide-field, high-resolution Fourier ptychographic microscopy. Nature Photonics, 7, 739-745(2013).
[32] Jiasong SUN, Yuzhen ZHANG, Qian CHEN等. Fourier ptychographic microscopy: theory, advances, and applications. Acta Optica Sinica, 36, 89-107(2016).
[33] J L HARRIS. Diffraction and resolving power. Journal of the Optical Society of America, 54, 931-933(1964).
[34] D CHAO, C L CHEN, K HE et al. Learning a deep convolutional network for image super-resolution, 184-199(2014).
[35] D J BRADY, N HAGEN. Multiscale lens design. Optics Express, 17, 10659-10674(2009).
[36] A AKIN, O COGAL, K SEYID et al. Hemispherical multiple camera system for high resolution omni-directional light field imaging. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3, 137-144(2013).
[37] D J BRADY, M E GEHM, R A STACK et al. Multiscale gigapixel photography. Nature, 486, 386-389(2012).
[38] L ZHU, X SHAO. Research progress on scattering imaging technology. Acta Optica Sinica, 40, 0111005(2020).
[39] I M VELLEKOOP, A P MOSK. Focusing coherent light through opaque strongly scattering media. Optics Letters, 32, 2309-2311(2007).
[40] S POPOFF, G LEROSEY, M FINK et al. Image transmission through an opaque material. Nature Communications, 1, 1-5(2010).
[41] C GUO, J LIU, W LI et al. Imaging through scattering layers exceeding memory effect range by exploiting prior information. Optics Communications, 434, 203-208(2019).
[42] J BERTOLOTTI, C BLUM et al. Non-invasive imaging through opaque scattering layers. Nature, 491, 232-234(2012).
[43] X YANG, Y PU, D PSALTIS. Imaging blood cells through scattering biological tissue using speckle scanning microscopy. Optics Express, 22, 3405-3413(2014).
[44] D TANG, S K SAHOO, V TRAN et al. Single-shot large field of view imaging with scattering media by spatial demultiplexing. Applied Optics, 57, 7533-7538(2018).
[45] C GUO, J LIU, W LI et al. Imaging through scattering layers exceeding memory effect range by exploiting prior information. Optics Communications, 434, 203-208(2019).
[46] W LI, J LIU, S HE et al. Multitarget imaging through scattering media beyond the 3D optical memory effect. Optics Letters, 45, 2692-2695(2020).
[47] G WANG, J LIU, X SUN et al. Pose estimation of hidden object behind a thin scattering layer based on speckle correlation. Optics Communications, 463, 125361(2020).
[48] M ROWE, E PUGH et al. Target detection in optically scattering media by polarization difference imaging. Applied Optics, 35, 1855-1870(1996).
[49] Enhancement of the point-spread function for imaging in scattering media by use of polarization-difference imaging. Journal of the Optical Society of America A, 17, 1-10(2000).
[50] Y Y SCHECHNER, N KARPEL. Recovery of underwater visibility and structure by polarization analysis. IEEE Journal of Occanic Engineering, 30, 570-587(2005).
[51] F LIU, L CAO, X SHAO et al. Polarimetric dehazing utilizing spatial frequency segregation of images. Applied Optics, 54, 8116-8122(2015).
[52] P HAN, F LIU, K YANG et al. Active underwater descattering and image recovery. Applied Optics, 56, 6631-6638(2017).
[53] F LIU, P HAN, Y WEI et al. Deeply seeing through highly turbid water by active polarization imaging. Optics Letters, 43, 4903-4906(2018).
[54] H HU, J LI, X LI et al. Underwater polarization difference imaging with three degrees of freedom. Acta Optica Sinica, 41, 0329001(2021).
[55] Z LI, X HUANG, Y CAO et al. Single-photon computational 3D imaging at 45 km. Photonics Research, 8, 1532-1540(2020).
[56] Zhengping LI, Juntian YE, Xin HUANG et al. Single-photon imaging over 200 km. Optica, 8, 344-349(2021).
[57] K MONAKHOVA, K YANNY, N AGGARWAL et al. Spectral DiffuserCam: lensless snapshot hyperspectral imaging with a spectral filter array. Optica, 7, 1298-1307(2020).
[58] K KUBALA, E DOWSKI, W T CATHEY. Reducing complexity in computational imaging systems. Optics Express, 11, 2102-2108(2003).
[59] T YANG, G F JIN, J ZHU. Automated design of freeform imaging systems. Light: Science & Applications, 6(2017).
[60] D G STORK, M D ROBINSON. Information-based methods for optics/image processing co-design. Information Optics DNA-Based Nanoscale Integration, 860, 125-135(2006).
[61] M D ROBINSON, D G STORK. Joint digital-optical design of super resolution multiframe imaging systems. Applied Optics, 47, B11-B20(2008).
[62] T VETTENBURG, A R HARVEY. Holistic optical-digital hybrid-imaging design: wide-field reflective imaging. Applied Optics, 52, 3931-3936(2013).
[63] K ZHANG, Y H JUNG, S MIKAEL et al. Origami silicon optoelectronics for hemispherical electronic eye systems. Nature Communications, 8, 1782(2017).
Get Citation
Copy Citation Text
Xiaopeng SHAO, Yun SU, Jinpeng LIU, Fei LIU, Wei LI, Teli XI. Connotation and System of Computational Imaging(Invited)[J]. Acta Photonica Sinica, 2021, 50(5): 1
Category: Imaging Systems
Received: Apr. 9, 2021
Accepted: May. 14, 2021
Published Online: Jun. 22, 2021
The Author Email: