AEROSPACE SHANGHAI, Volume. 41, Issue 5, 1(2024)

Solar Close Observations and Proximity Experiments

Jun LIN*, Xi LU, Yuhao CHEN, Fan HUANG, Shenyi ZHANG, Yiteng ZHANG, Bin ZHOU, Zhenhua GE, Liu LIU, Hui TIAN, Jiansen HE, Xin CHENG, Pengfei CHEN, Xianyong BAI, Haisheng JI, Jiajia LIU, and Xiaoshi ZHANG
Author Affiliations
  • Yunnan Observatories,Chinese Academy of Sciences, Kunming650216, , China
  • show less
    References(66)

    [1] C FANG. Space weather comes into our life. Chin.J.Nat., 28, 194-198(2006).

    [2] Y QIU, S H RAO, C LI et al. Calibration procedures for the CHASE/HIS science data. Sci Sin-Phys.Mech.Astron., 65, 289603(2022).

    [3] C LI, C FANG, Z LI et al. The chinese hα solar explorer (CHASE) mission:an overview. Sci.China-Phys.Mech.Astron., 65, 289602(2022).

    [4] W Q GAN, C ZHU, Y Y DENG et al. Advanced space-based solar observatory (ASO-S):an overview. Res.Astron. Astrophys., 19, 156(2019).

    [5] X Y BAI, H TIAN, Y Y DENG et al. The solar upper transition region imager (SUTRI) onboard the SATech-01 satellite. Res.Astron.Astrophys., 23(2023).

    [6] N J FOX, M C VELLI, S D BALE et al. The solar probe plus mission:humanity’s first visit to our star. Space Sci.Rev., 204, 7-48(2016).

    [7] S D BALE, S T BADMAN, J W BONNELL et al. Highly structured slow solar wind emerging from an equatorial coronal hole. Nature, 576, 237-242(2019).

    [8] R A HOWARD, A VOURLIDAS, V BOTHMER et al. Near-Sun observations of an F-corona decrease and K-corona fine structure. Nature, 576, 232-236(2019).

    [9] D J MCCOMAS, E R CHRISTIAN, C M S COHEN et al. Probing the energetic particle environment near the sun. Nature, 576, 223-227(2019).

    [10] J C KASPER, S D BALE, J W BELCHER et al. Alfvénic velocity spikes and rotational flows in the near-Sun solar wind. Nature, 576, 228-231(2019).

    [11] J C KASPER, K G KLEIN, E LICHKO et al. Parker solar probe enters the magnetically dominated solar corona. Phys.Rev.Lett., 127, 255101(2021).

    [12] O M ROMEO, C R BRAGA, S T BADMAN et al. Near-sun in situ and remote-sensing observations of a coronal mass ejection and its effect on the heliospheric current sheet. Astrophys.J., 954, 168(2023).

    [13] J LIN, T G FORBES. Effects of reconnection on the coronal mass ejection process. J.Geophys.Res., 105, 2375-2392(2000).

    [14] J LIN. Energetics and propagation of coronal mass ejections in different plasma environments. Chin.J.Astron.Astrophys., 2, 539-556(2002).

    [15] J LIN, S MANCUSO, A VOURLIDAS. Theoretical investigation of the onsets of type ii radio bursts during solar eruptions. Astrophys.J., 649, 1110-1123(2006).

    [16] A J TYLKA, C M S COHEN, W F DIETRICH et al. Onsets and release times in solar particle events, 3305-3308(2003).

    [17] Y K KO, L A FISK, J GEISS et al. An empirical study of the electron temperature and heavy ion velocities in the south polar coronal hole. Sol.Phys., 171, 345-361(1997).

    [18] E LANDI, J R GRUESBECK, S T LEPRI et al. Charge state evolution in the solar wind.II.Plasma charge state composition in the inner corona and accelerating fast solar wind. Astrophys.J., 761, 48(2012).

    [19] C C SHEN, J C RAYMOND, Z MIKIĆ et al. Time-dependent ionization in a steady flow in an MHD model of the solar corona and wind. Astrophys.J., 850, 26(2017).

    [20] E DZIFČÁKOVÁ, J DUDÍK, A ZEMANOVÁ et al. KAPPA:A package for the synthesis of optically thin spectra for the non-Maxwellian κ-distributions.II.Major update to compatibility with CHIANTI version 10. Astrophys.J.Suppl.Ser., 257, 62(2021).

    [21] E N PARKER. Dynamics of the interplanetary gas and magnetic fields. Astrophys.J., 128, 664(1958).

    [22] N E RAOUAFI, G STENBORG, D B SEATON et al. Magnetic reconnection as the driver of the solar wind. Astrophys.J., 945, 28(2023).

    [23] D MULLER, CYR O C ST, I ZOUGANELIS et al. The solar orbiter mission.Science overview. Astron.Astrophys., 642(2020).

    [24] Y Y DENG, G P ZHOU, S W DAI et al. Solar polar-orbit observatory. Chin.Sci.Bull., 68, 298-308(2023).

    [25] A CIARAVELLA, J C RAYMOND, J LIN et al. Elemental abundances and post-coronal mass ejection current sheet in a very hot active region. Astrophys.J., 575, 1116-1130(2002).

    [26] J LIN, Y K KO, L SUI et al. Direct observations of the magnetic reconnection site of an eruption on 2003 November 18. Astrophys.J., 622, 1251-1264(2005).

    [27] J LIN, J LI, T G FORBES et al. Features and properties of coronal mass ejection/flare current sheets. Astrophys.J., 658, 123-126(2007).

    [28] J LIN, J LI, Y K KO et al. Investigation of thickness and electrical resistivity of the current sheets in solar eruptions. Astrophys.J., 693, 1666-1677(2009).

    [29] J QIU, H M WANG, C Z CHENG et al. Magnetic reconnection and mass acceleration in flare-coronal mass ejection events. Astrophys.J., 604, 900(2004).

    [30] Y K KO, J C RAYMOND, J LIN et al. Dynamical and physical properties of a post-coronal mass ejection current sheet. Astrophys.J., 594, 1068-1084(2003).

    [31] J LIN, N A MURPHY, C C SHEN et al. Review on current sheets in CME development:theories and observations. Space Sci.Rev., 194, 237-302(2015).

    [32] J LIN, L NI. Large-scale current sheets in flares and CMEs. Geophys.Monograph Ser., 235, 239-255(2018).

    [33] J YE, J C RAYMOND, Z X MEI et al. Three-dimensional simulation of thermodynamics on confined turbulence in a large-scale CME-flare current sheet. Astrophys.J., 955, 88(2023).

    [34] A BEMPORAD, G L SHI, S T LI et al. First determination in the extended corona of the 2d thermal evolution of a current sheet after a solar eruption. Astrophys.J., 964, 92(2024).

    [35] Y LI, J LIN. Acceleration of electrons and protons in reconnecting current sheets including single or multiple X-points. Sol.Phys., 279, 91-113(2012).

    [36] Y LI, N WU, J LIN. Charged-particle acceleration in a reconnecting current sheet including multiple magnetic islands and a nonuniform background magnetic field. Astron.Astrophys., 605, 120(2017).

    [37] Y LI, L NI, J YE et al. Particle accelerations in a 2.5-dimensional reconnecting current sheet in turbulence. Astrophys.J., 938, 24(2022).

    [38] N H BIAN, G LI. Lagrangian perspectives on the small scale structure of Alfvénic turbulence and stochastic models for the dispersion of fluid particles and magnetic field lines in the solar wind. Astrophys.J.Suppl.Seri., 4(2024).

    [39] X Y XIE, G LI, K K REEVES et al. Probing turbulence in solar flares from SDO/AIA emission lines. Frontier in Astron.Space Sci., 11, 1383746(2024).

    [40] U MITRA-KRAEV, A O BENZ. A nanoflare heating model for the quiet solar corona. Astron.Astrophys., 373, 318-328(2001).

    [41] M ASGARI-TARGHI, A A VAN BALLEGOOIJEN, S R CRANMER et al. The spatial and temporal dependence of coronal heating by Alfvén wave turbulence. Astrophys.J., 773, 111(2013).

    [42] J W CIRTAIN, L GOLUB, A WINGEBARGER et al. Energy release in the solar corona from spatially resolved magnetic braids. Nature, 493, 501-503(2013).

    [43] A A VAN BALLEGOOIJEN, M ASGARI-TARGHI, S R CRANMER et al. Heating of the solar chromosphere and corona by alfvén wave turbulence. Astrophys.J., 736, 3(2011).

    [44] S R CRANMER, M ASGARI-TARGHI, M P MIRALLES et al. The role of turbulence in coronal heating and solar wind expansion. Philosophical Transactions of the Royal Society of London Series A, 373, 20140148(2015).

    [45] M J ASCHWANDEN. Reconciling power-law slopes in solar flare and nanoflare size distributions. Astrophys.J.Lett., 934(2022).

    [46] P J CARGILL. Active region emission measure distributions and implications for nanoflare heating. Astrophys.J., 784, 49(2014).

    [47] J J LIU, M CARLSSON, C J NELSON et al. Co-spatial velocity and magnetic swirls in the simulated solar photosphere. Astron.Astrophys., 632(2019).

    [48] E N PARKER. The solar-flare phenomenon and the theory of reconnection and annihiliation of magnetic fields. Astrophys.J.Suppl.Ser., 8, 177(1963).

    [49] J LIN, J C RAYMOND, A A VAN BALLEGOOIJEN. The role of magnetic reconnection in the observable features of solar eruptions. Astrophys.J., 602, 422-435(2004).

    [50] B SCHMIEDER, H TIAN, T KUCERA et al. Open questions on prominences from coordinated observations by IRIS,Hinode,SDO/AIA,THEMIS,and the Meudon/MSDP. Astron.Astrophys., 569(2014).

    [51] S MANCUSO, M V GARZELLI. Radial profile of the inner heliospheric magnetic field as deduced from Faraday rotation observations. Astron.Astrophys., 553(2013).

    [52] A KUMARI, R RAMESH, C KATHIRAVAN et al. Direct estimates of the solar coronal magnetic field using contemporaneous extreme-ultraviolet,radio,and white-light observations. Astrophys.J., 881, 24(2019).

    [53] D KURIDZE, M MATHIOUDAKIS, H MORGAN et al. Mapping the magnetic field of flare coronal loops. Astrophys.J., 874, 126(2019).

    [54] G D FLEISHMAN, D E GARY, B CHEN et al. Decay of the coronal magnetic field can release sufficient energy to power a solar flare. Science, 367, 278-280(2020).

    [55] Z H YANG, C BETHGE, H TIAN et al. Global maps of the magnetic field in the solar corona. Science, 369, 694-697(2020).

    [56] J R SZALAY, P POKORNÝ, S D BALE et al. The near-sun dust environment:initial observations from Parker Solar Probe. Astrophys.J.Suppl.Ser., 246, 27(2020).

    [57] Y H CHEN, Z LIU, P F CHEN et al. Can the Parker Solar Probe detect a CME-flare current sheet?. Astrophys.J.Suppl.Ser., 269, 22(2023).

    [59] J FENG, S SHIAN, B XIAO et al. First-principles calculations of the high-temperature phase transformation in yttrium tantalate. Phys.Rev.B., 90(2014).

    [60] L CHEN, B H LI, J FENG. Rare-earth tantalates for next-generation thermal barrier coatings. Progress in Mater.Sci., 144, 101265(2024).

    [61] E R PRIEST. MHD of the sun(2014).

    [62] L E Bell. Cooling,heating,generating power,and recovering waste heat with thermoelectric systems. Science, 321, 1457-1461(2008).

    [63] S ZHANG, Z LIU, X ZHANG et al. Sustainable thermal energy harvest for generating electricity. The Innovation, 5, 100591(2024).

    [64] L LIU, K L BAO, J C FENG et al. Design and analysis of an advanced thermal management system for the solar close observations and proximity experiments spacecraft. Astronomical Techniques and Instruments, 1, 52-61(2024).

    [65] K L BAO, X F ZHU, J C FENG et al. Application and prospect of the fluid cooling system of solar arrays for probing the Sun. Astronomical Techniques and Instruments, 1, 62-70(2024).

    [68] Y M WANG, X Y BAI, C Y CHEN et al. Solar ring mission:building a panorama of the sun and inner-heliosphere. Advances in Space Research, 71, 1146(2023).

    [69] C FANG, B Z GU, X Y YUAN et al. 2.5 m wide-field and high-resolution telescope. Sci Sin-Phys.Mech.Astron., 49(2019).

    Tools

    Get Citation

    Copy Citation Text

    Jun LIN, Xi LU, Yuhao CHEN, Fan HUANG, Shenyi ZHANG, Yiteng ZHANG, Bin ZHOU, Zhenhua GE, Liu LIU, Hui TIAN, Jiansen HE, Xin CHENG, Pengfei CHEN, Xianyong BAI, Haisheng JI, Jiajia LIU, Xiaoshi ZHANG. Solar Close Observations and Proximity Experiments:[J]. AEROSPACE SHANGHAI, 2024, 41(5): 1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Special Paper of Expert

    Received: Jun. 25, 2024

    Accepted: --

    Published Online: Jan. 15, 2025

    The Author Email:

    DOI:10.19328/j.cnki.2096-8655.2024.05.001

    Topics