Journal of the Chinese Ceramic Society, Volume. 51, Issue 10, 2544(2023)

Recent Development on Electroactive Biomaterials for Bone Tissue Engineering Application

LIU Haoqing1,*... WU Chengwei1, WENG Wenjian1, DONG Lingqing2 and CHENG Kui1 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(93)

    [1] [1] MURRAY C E, COLEMAN C M. Impact of diabetes mellitus on bone health[J]. Int J Mol Sci, 2019, 20(19): 4873.

    [2] [2] HU Y, CHEN X, WANG S C, et al. Subchondral bone microenvironment in osteoarthritis and pain[J]. Bone Res, 2021, 9(1): 20.

    [3] [3] REDDI A H. Morphogenesis and tissue engineering of bone and cartilage: Inductive signals, stem cells, and biomimetic biomaterials[J]. Tissue Eng, 2000, 6(4): 351-359.

    [4] [4] SENGUPTA D, WALDMAN S D, LI S. From in vitro to in situ tissue engineering[J]. Ann Biomed Eng, 2014, 42(7): 1537-1545.

    [5] [5] SONG L, SENGUPTA D, SHU C E. Vascular tissue engineering: From in vitro to in situ[J]. WIREs Mechanisms Disease, 2014, 6(1): 61-76.

    [6] [6] YANG M, BRACKENBURY W J. Membrane potential and cancer progression[J]. Front Physiol, 2013, 4: 185.

    [7] [7] NAIR M, CALAHORRA Y, KAR-NARAYAN S, et al. Self-assembly of collagen bundles and enhanced piezoelectricity induced by chemical crosslinking[J]. Nanoscale, 2019, 11(32): 15120-15130.

    [8] [8] HENG B C, BAI Y Y, LI X C, et al. Electroactive biomaterials for facilitating bone defect repair under pathological conditions[J]. Adv Sci, 2023, 10(2): e2204502.

    [9] [9] ZHENG T Y, HUANG Y Q, ZHANG X H, et al. Mimicking the electrophysiological microenvironment of bone tissue using electroactive materials to promote its regeneration[J]. J Mater Chem B, 2020, 8(45): 10221-10256.

    [10] [10] KAPAT K, SHUBHRA Q T H, ZHOU M A, et al. Piezoelectric nano-biomaterials for biomedicine and tissue regeneration[J]. Adv Funct Mater, 2020, 30(44): 1909045.

    [11] [11] RAY S, BEHARI J. Electrical conduction in bone in frequency range 0.4-1.3 GHz[J]. Biomater Med Devices Artif Organs, 1986, 14(3-4): 153-165.

    [12] [12] YASUDA I, NOGUCHI K, SATA T. Dynamic callus and electric callus[J]. J Bone Joint Surg, 1955, 37: 1292-1293.

    [13] [13] RAVI H K, SIMONA F, HULLIGER J, et al. Molecular origin of piezo- and pyroelectric properties in collagen investigated by molecular dynamics simulations[J]. J Phys Chem B, 2012, 116(6): 1901-1907.

    [14] [14] EL MESSIERY M A, HASTINGS G W, RAKOWSKI S. Ferro-electricity of dry cortical bone[J]. J Biomed Eng, 1979, 1(1): 63-65.

    [15] [15] LIU J Z, HOU Z D, QU C, et al. Experimental study on the coupling between the piezoelectric and streaming potential in wet bone[J]. J Biomech, 2023, 147: 111454.

    [16] [16] GUO J X, CHEN W W, CHEN H S, et al. Recent progress in optical control of ferroelectric polarization[J]. Adv Optical Mater, 2021, 9(23): 2002146.

    [17] [17] CIOFANI G, RICOTTI L, CANALE C, et al. Effects of Barium titanate nanoparticles on proliferation and differentiation of rat mesenchymal stem cells[J]. Colloids Surf B Biointerfaces, 2013, 102: 312-320.

    [18] [18] DUBEY A K, KINOSHITA R, KAKIMOTO K I. Piezoelectric sodium potassium niobate mediated improved polarization and in vitro bioactivity of hydroxyapatite[J]. RSC Adv, 2015, 5(25): 19638-19646.

    [19] [19] YAO T T, CHEN J Q, WANG Z G, et al. The antibacterial effect of potassium-sodium niobate ceramics based on controlling piezoelectric properties[J]. Colloids Surf B Biointerfaces, 2019, 175: 463-468.

    [20] [20] TANG B L, ZHANG B, ZHUANG J J, et al. Surface potential-governed cellular osteogenic differentiation on ferroelectric polyvinylidene fluoride trifluoroethylene films[J]. Acta Biomater, 2018, 74: 291-301.

    [21] [21] PARK J B, VON RECUM A F, KENNER G H, et al. Piezoelectric ceramic implants: A feasibility study[J]. J Biomed Mater Res, 1980, 14(3): 269-277.

    [22] [22] YU S W, KUO S T, TUAN W H, et al. Cytotoxicity and degradation behavior of potassium sodium niobate piezoelectric ceramics[J]. Ceram Int, 2012, 38(4): 2845-2850.

    [23] [23] BARBERI J, SPRIANO S. Titanium and protein adsorption: an overview of mechanisms and effects of surface features[J]. Materials, 2021, 14(7): 1590.

    [24] [24] HARJANTO D, ZAMAN M H. Matrix mechanics and receptor-ligand interactions in cell adhesion[J]. Org Biomol Chem, 2010, 8(2): 299-304.

    [25] [25] CHEN W, YU Z X, PANG J S, et al. Fabrication of biocompatible potassium sodium niobate piezoelectric ceramic as an electroactive implant[J]. Materials, 2017, 10(4): 345.

    [26] [26] CHEN J Q, LI W P, ZHOU L, et al. A built-in electric field with nanoscale distinction for cell behavior regulation[J]. J Mater Chem B, 2018, 6(18): 2723-2727.

    [27] [27] ZHANG J M, HE X Z, ZHOU Z Y, et al. The osteogenic response to chirality-patterned surface potential distribution of CFO/P(VDF-TrFE) membranes[J]. Biomater Sci, 2022, 10(16): 4576-4587.

    [28] [28] BELOTI M M, DE OLIVEIRA P T, GIMENES R, et al. In vitro biocompatibility of a novel membrane of the composite poly(vinylidene-trifluoroethylene)/barium titanate[J]. J Biomed Mater Res A, 2006, 79(2): 282-288.

    [29] [29] WANG P, ZHOU X S, LV C L, et al. Modulating the surface potential of microspheres by phase transition in strontium doped Barium titanate to restore the electric microenvironment for bone regeneration[J]. Front Bioeng Biotechnol, 2022, 10: 988300.

    [30] [30] WANG W J, LI J H, LIU H, et al. Advancing versatile ferroelectric materials toward biomedical applications[J]. Adv Sci, 2021, 8(1): 2003074.

    [31] [31] WANG Z L, SONG J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771): 242-246.

    [32] [32] QIN D, WANG N, YOU X G, et al. Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: Ongoing research and perspectives[J]. Biomater Sci, 2022, 10(2): 318-353.

    [33] [33] VASILESCU D, CORNILLON R, MALLET G. Piezoelectric resonances in amino-acids[J]. Nature, 1970, 225(5233): 635.

    [34] [34] WANG R X, SUI J J, WANG X D. Natural piezoelectric biomaterials: A biocompatible and sustainable building block for biomedical devices[J]. ACS Nano, 2022, 16(11): 17708-17728.

    [35] [35] YANG F, LI J, LONG Y, et al. Wafer-scale heterostructured piezoelectric bio-organic thin films[J]. Science, 2021, 373(6552): 337-342.

    [36] [36] KHOLKIN A, AMDURSKY N, BDIKIN I, et al. Strong piezoelectricity in bioinspired peptide nanotubes[J]. ACS Nano, 2010, 4(2): 610-614.

    [37] [37] TAO K, XUE B, LI Q, et al. Stable and optoelectronic dipeptide assemblies for power harvesting[J]. Mater Today, 2019, 30: 10-16.

    [38] [38] CARTWRIGHT V F, BROWN C P. Hierarchical piezoresponse in collagen[J]. Adv Mater Technol, 2022, 7(4): 2101166.

    [39] [39] YUCEL T, CEBE P, KAPLAN D L. Structural origins of silk piezoelectricity[J]. Adv Funct Mater, 2011, 21(4): 779-785.

    [40] [40] LI Y B, LIU Y Z, LI R H, et al. Collagen-based biomaterials for bone tissue engineering[J]. Mater Des, 2021, 210: 110049.

    [41] [41] DENG J P, SONG Q, LIU S Y, et al. Advanced applications of cellulose-based composites in fighting bone diseases[J]. Compos Part B Eng, 2022, 245: 110221.

    [42] [42] PATEL D K, DUTTA S D, JIN H X, et al. 3D-printable chitosan/silk fibroin/cellulose nanoparticle scaffolds for bone regeneration via M2 macrophage polarization[J]. Carbohydr Polym, 2022, 281: 119077.

    [43] [43] DI MARTINO A, SITTINGER M, RISBUD M V. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering[J]. Biomaterials, 2005, 26(30): 5983-5990.

    [44] [44] ZHOU Z Y, ZHANG J M, DUAN X Y, et al. Laser annealing of graphene/P(VDF-TrFE) composite films and its effects on protein adsorption[J]. Mater Lett, 2022, 308: 131119.

    [45] [45] FARAHANI A, ZAREI-HANZAKI A, ABEDI H R, et al. An investigation into the polylactic acid texturization through thermomechanical processing and the improved d33 piezoelectric outcome of the fabricated scaffolds[J]. J Mater Res Technol, 2021, 15: 6356-6366.

    [46] [46] JIAO H, SONG S, ZHAO K, et al. Synthesis and properties of porous piezoelectric BT/PHBV composite scaffold[J]. J Biomater Sci Polym Ed, 2020, 31(12): 1552-1565.

    [47] [47] TOKIWA Y, CALABIA B P. Biodegradability and biodegradation of poly(lactide)[J]. Appl Microbiol Biotechnol, 2006, 72(2): 244-251.

    [48] [48] WANG L Y, DU J Q, CAO D R, et al. Recent advances and the application of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as tissue engineering materials[J]. J Macromol Sci Part A, 2013, 50(8): 885-893.

    [49] [49] LIU W W, YANG D, WEI X H, et al. Fabrication of piezoelectric porous BaTiO3 scaffold to repair large segmental bone defect in sheep[J]. J Biomater Appl, 2020, 35(4-5): 544-552.

    [50] [50] CHANG M C, TANG C M, LIN Y H, et al. Toxic mechanisms of Roth801, canals, microparticles and nanoparticles of ZnO on MG-63 osteoblasts[J]. Mater Sci Eng C Mater Biol Appl, 2021, 119: 111635.

    [51] [51] XING D L, ZUO W, CHEN J H, et al. Spatial delivery of triple functional nanoparticles via an extracellular matrix-mimicking coaxial scaffold synergistically enhancing bone regeneration[J]. ACS Appl Mater Interfaces, 2022, 14(33): 37380-37395.

    [52] [52] MURILLO G, BLANQUER A, VARGAS-ESTEVEZ C, et al. Bioelectronics: Electromechanical nanogenerator-cell interaction modulates cell activity[J]. Adv Mater, 2017, 29(24): 1605048.

    [53] [53] HARADA Y, KADONO K, TERAO T, et al. Helical conformation endows poly-l-lactic acid fibers with a piezoelectric charge under tensile stress[J]. J Vet Med Sci, 2013, 75(9): 1187-1192.

    [54] [54] CHEN J Y, SONG L, QI F W, et al. Enhanced bone regeneration via ZIF-8 decorated hierarchical polyvinylidene fluoride piezoelectric foam nanogenerator: Coupling of bioelectricity, angiogenesis, and osteogenesis[J]. Nano Energy, 2023, 106: 108076.

    [55] [55] LEI J, WANG C F, FENG X B, et al. Sulfur-regulated defect engineering for enhanced ultrasonic piezocatalytic therapy of bacteria-infected bone defects[J]. Chem Eng J, 2022, 435: 134624.

    [56] [56] CAI K Z, JIAO Y L, QUAN Q, et al. Improved activity of MC3T3-E1 cells by the exciting piezoelectric BaTiO3/TC4 using low-intensity pulsed ultrasound[J]. Bioact Mater, 2021, 6(11): 4073-4082.

    [57] [57] CHEN J, LI S J, JIAO Y L, et al. In vitro study on the piezodynamic therapy with a BaTiO3-coating titanium scaffold under low-intensity pulsed ultrasound stimulation[J]. ACS Appl Mater Interfaces, 2021, 13(41): 49542-49555.

    [58] [58] ZHANG J M, HE X Z, CHEN X Y, et al. Enhancing osteogenic differentiation of BMSCs on high magnetoelectric response films[J]. Mater Sci Eng C Mater Biol Appl, 2020, 113: 110970.

    [59] [59] REIS J, FRIAS C, CANTO E CASTRO C, et al. A new piezoelectric actuator induces bone formation in vivo: A preliminary study[J]. J Biomed Biotechnol, 2012, 2012: 613403.

    [60] [60] CARTER A, POPOWSKI K, CHENG K, et al. Enhancement of bone regeneration through the converse piezoelectric effect, a novel approach for applying mechanical stimulation[J]. Bioelectricity, 2021, 3(4): 255-271.

    [61] [61] KOHATA K, ITOH S, HORIUCHI N, et al. Influences of osteoarthritis and osteoporosis on the electrical properties of human bones as in vivo electrets produced due to Wolff’s law[J]. Biomed Mater Eng, 2017, 28(1): 65-74.

    [62] [62] YU B, QIAO Z G, CUI J J, et al. A host-coupling bio-nanogenerator for electrically stimulated osteogenesis[J]. Biomaterials, 2021, 276: 120997.

    [63] [63] QIAO Z G, LIAN M F, LIU X Z, et al. Electreted sandwich membranes with persistent electrical stimulation for enhanced bone regeneration[J]. ACS Appl Mater Interfaces, 2022, 14(28): 31655-31666.

    [64] [64] WANG Y Y, SUN X D, WANG Q F, et al. In vitro and in vivo evaluation of porous chitosan electret membrane for bone regeneration[J]. J Bioact Compatible Polym, 2018, 33(4): 426-438.

    [65] [65] ANDRABI W H, BEHARI J. Formation of bone electrets and their charge decay characteristics[J]. Biomaterials, 1981, 2(2): 120-123.

    [66] [66] LAGOMARSINI C, JEAN-MISTRAL C, MONFRAY S, et al. Optimization of an electret-based soft hybrid generator for human body applications[J]. Smart Mater Struct, 2019, 28(10): 104003.

    [67] [67] ZAFAR M U, BRAVO-CORDERO J J, TORRAMADE-MOIX S, et al. Effects of electret coating technology on coronary stent thrombogenicity[J]. Platelets, 2022, 33(2): 312-319.

    [68] [68] LONG X J, WANG X Z, YAO L L, et al. Graphene/Si-promoted osteogenic differentiation of BMSCs through light illumination[J]. ACS Appl Mater Interfaces, 2019, 11(47): 43857-43864.

    [69] [69] CHANG T W, LI Y S, MATSUHISA N, et al. Emerging polymer electrets for transistor-structured memory devices and artificial synapses[J]. J Mater Chem C, 2022, 10(37): 13372-13394.

    [70] [70] WU C W, HE X Z, WENG W J, et al. Electroactive extracellular matrix/polypyrrole composite films and their microenvironmental effects on osteogenic differentiation of BMSCs[J]. Chem Eng J, 2022, 443: 136508.

    [71] [71] WEI Y, MO X J, ZHANG P C, et al. Directing stem cell differentiation via electrochemical reversible switching between nanotubes and nanotips of polypyrrole array[J]. ACS Nano, 2017, 11(6): 5915-5924.

    [72] [72] LIU Z R, WAN X Y, WANG Z L, et al. Electroactive biomaterials and systems for cell fate determination and tissue regeneration: Design and applications[J]. Adv Mater, 2021, 33(32): e2007429.

    [73] [73] RAVICHANDRAN R, SUNDARRAJAN S, VENUGOPAL J R, et al. Applications of conducting polymers and their issues in biomedical engineering[J]. J R Soc Interface, 2010, 7(Suppl 5): S559-S579.

    [74] [74] PAULSEN B D, TYBRANDT K, STAVRINIDOU E, et al. Organic mixed ionic-electronic conductors[J]. Nat Mater, 2020, 19(1): 13-26.

    [75] [75] KASPARKOVA V, HUMPOLICEK P, STEJSKAL J, et al. Exploring the critical factors limiting polyaniline biocompatibility[J]. Polymers, 2019, 11(2): 362.

    [76] [76] IANDOLO D, RAVICHANDRAN A, LIU X J, et al. Development and characterization of organic electronic scaffolds for bone tissue engineering[J]. Adv Healthc Mater, 2016, 5(12): 1505-1512.

    [77] [77] HUANG Y Z, ZHANG L Y, JI Y R, et al. A non-invasive smart scaffold for bone repair and monitoring[J]. Bioact Mater, 2022, 19: 499-510.

    [78] [78] SHIN S R, LI Y C, JANG H L, et al. Graphene-based materials for tissue engineering[J]. Adv Drug Deliv Rev, 2016, 105: 255-274.

    [79] [79] CHETYRKINA M R, FEDOROV F S, NASIBULIN A G. In vitro toxicity of carbon nanotubes: A systematic review[J]. RSC Adv, 2022, 12(25): 16235-16256.

    [80] [80] DUTTA R C, DEY M, DUTTA A K, et al. Competent processing techniques for scaffolds in tissue engineering[J]. Biotechnol Adv, 2017, 35(2): 240-250.

    [81] [81] POBLOTH A M, CHECA S, RAZI H, et al. Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep[J]. Sci Transl Med, 2018, 10(423): eaam8828.

    [82] [82] GHOSH S, WEBSTER T. Metallic nanoscaffolds as osteogenic promoters: Advances, challenges and scope[J]. Metals, 2021, 11(9): 1356.

    [83] [83] FRATODDI I, VENDITTI I, CAMETTI C, et al. How toxic are gold nanoparticles? The state-of-the-art[J]. Nano Res, 2015, 8(6): 1771-1799.

    [84] [84] CARNOVALE C, BRYANT G, SHUKLA R, et al. Size, shape and surface chemistry of nano-gold dictate its cellular interactions, uptake and toxicity[J]. Prog Mater Sci, 2016, 83: 152-190.

    [85] [85] POURJAVADI A, DOROUDIAN M, AHADPOUR A, et al. Injectable chitosan/κ-carrageenan hydrogel designed with au nanoparticles: A conductive scaffold for tissue engineering demands[J]. Int J Biol Macromol, 2019, 126: 310-317.

    [86] [86] NAVAEI A, SAINI H, CHRISTENSON W, et al. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs[J]. Acta Biomater, 2016, 41: 133-146.

    [87] [87] LI J F, LIU X, CROOK J M, et al. A 3D printed graphene electrode device for enhanced and scalable stem cell culture, osteoinduction and tissue building[J]. Mater Des, 2021, 201: 109473.

    [88] [88] ZHANG Z Z, ZHENG T Y, ZHU R. Microchip with single-cell impedance measurements for monitoring osteogenic differentiation of mesenchymal stem cells under electrical stimulation[J]. Anal Chem, 2020, 92(18): 12579-12587.

    [89] [89] DAWSON J, LEE P S, VAN RIENEN U, et al. A general theoretical framework to study the influence of electrical fields on mesenchymal stem cells[J]. Front Bioeng Biotechnol, 2020, 8: 557447.

    [90] [90] LIU S H, FU Y, LI G J, et al. Conjugated polymer for voltage-controlled release of molecules[J]. Adv Mater, 2017, 29(35): 1701733.

    [91] [91] ZHU Y F, YAO L L, LIU Z G, et al. Electrical potential specified release of BSA/hep/polypyrrole composite film and its cellular responses[J]. ACS Appl Mater Interfaces, 2019, 11(28): 25457-25464.

    [92] [92] QU J, ZHAO X, MA P X, et al. Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized smart drug release[J]. Acta Biomater, 2018, 72: 55-69.

    [93] [93] DA SILVA L P, KUNDU S C, REIS R L, et al. Electric phenomenon: A disregarded tool in tissue engineering and regenerative medicine[J]. Trends Biotechnol, 2020, 38(1): 24-49.

    Tools

    Get Citation

    Copy Citation Text

    LIU Haoqing, WU Chengwei, WENG Wenjian, DONG Lingqing, CHENG Kui. Recent Development on Electroactive Biomaterials for Bone Tissue Engineering Application[J]. Journal of the Chinese Ceramic Society, 2023, 51(10): 2544

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Mar. 31, 2023

    Accepted: --

    Published Online: Nov. 26, 2023

    The Author Email: Haoqing LIU (12026048@zju.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics