Optics and Precision Engineering, Volume. 26, Issue 11, 2615(2018)

Minimally invasive continuous blood glucose monitor based on microfluidic and enzyme colorimetric technologies

XU Ke-xin*... CHEN Xiao-long, LI Da-chao and YU Hai-xia |Show fewer author(s)
Author Affiliations
  • [in Chinese]
  • show less
    References(13)

    [1] [1] XU M Y. Diabetes Study [M]. Shanghai: Publishing of Shanghai Science and Technology, 2004: 189.(in Chinese)

    [2] [2] JANG S. Review of emerging approaches in non-or minimally invasive glucose monitoring and their application to physiological human body fluids [J].International Journal of Biosensors & Bioelectronics, 2018, 4(1): 87.

    [3] [3] PANDEY R, PAIDI S K, VALDEZ T A, et al.. Noninvasive monitoring of blood glucose with Raman spectroscopy [J]. Accounts of Chemical Research, 2017, 50(2): 264-272.

    [4] [4] LITINSKAIA E L, BAZAEV N A, POZHAR K V, et al.. Methods for improving accuracy of non-invasive blood glucose detection via optical glucometer [J]. Young Researchers in Electrical & Electronic Engineering, 2017: 47-49.

    [6] [6] CHEN X D, GAO J, DING H Q. Infrared spectroscopy for non-invasive blood glucose monitoring(Invited) [J]. Chinese Optics, 2012(4): 317-326.(in Chinese)

    [7] [7] LUO Y, CHEN X, XU M, et al.. Optofluidic glucose detection by capillary-based ring resonators [J]. Optics & Laser Technology, 2014, 56(1): 12-14.

    [8] [8] SHARMA S, TAKAGI E, CASS T, et al.. Minimally invasive microneedle array electrodes employing direct electron transfer type glucose dehydrogenase for the development of continuous glucose monitoring sensors [J]. Procedia Technology, 2017, 27: 208-209.

    [9] [9] WANG G, POSCENTE M D, PARK S S, et al.. Wearable microsystem for minimally invasive, pseudo-continuous blood glucose monitoring: the e-mosquito [J]. Transactions on Biomedical Circuits & Systems, 2017, 11(5): 979-987.

    [11] [11] YU H, LI D, ROBERTS R C, et al.. An interstitial fluid transdermal extraction system for continuous glucose monitoring [J].Journal of Microelectromechanical Systems, 2012, 21(4): 917-925.

    [12] [12] LI D CH, LU B Y, ZHU R, et al.. An optofluidic system with volume measurement and surface plasmon resonance sensor for continuous glucose monitoring [J]. Biomicrofluidics, 2016, 10(1): 011913.

    CLP Journals

    [1] L Peng-fei, LU Zhi-qian, HE Qiao-zhi, WANG Qian, ZHAO Hui. Non-invasive blood glucose in vivo detection based on photoacoustic spectroscopy[J]. Optics and Precision Engineering, 2019, 27(6): 1301

    [2] CHEN Li-guo, WANG Zhao-long, BIAN Xiong-heng. Micro-droplet split digital microfluidic device with fan-shaped electrode[J]. Optics and Precision Engineering, 2019, 27(9): 1919

    Tools

    Get Citation

    Copy Citation Text

    XU Ke-xin, CHEN Xiao-long, LI Da-chao, YU Hai-xia. Minimally invasive continuous blood glucose monitor based on microfluidic and enzyme colorimetric technologies[J]. Optics and Precision Engineering, 2018, 26(11): 2615

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 1, 2018

    Accepted: --

    Published Online: Jan. 10, 2019

    The Author Email: Ke-xin XU (kexin@tju.edu.cn)

    DOI:10.3788/ope.20182611.2615

    Topics