Journal of the Chinese Ceramic Society, Volume. 52, Issue 1, 273(2024)

Progress and Challenges of Manganese Oxides in Aqueous Rechargeable Batteries

DU Lingyu1... BI Songshan2 and NIU Zhiqiang2,* |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(120)

    [1] [1] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat Chem, 2015, 7(1): 19-29.

    [2] [2] CHAO D L, ZHOU W H, XIE F X, et al. Roadmap for advanced aqueous batteries: From design of materials to applications[J]. Sci Adv, 2020, 6(21): eaba4098.

    [3] [3] SHIN J, CHOI J W. Opportunities and reality of aqueous rechargeable batteries[J]. Adv Energy Mater, 2020, 10(28): 2001386.

    [4] [4] ZHANG F L, ZHANG W C, WEXLER D, et al. Recent progress and future advances on aqueous monovalent-ion batteries towards safe and high-power energy storage[J]. Adv Mater, 2022, 34(24): e2107965.

    [5] [5] LI L, ZHANG Q C, HE B, et al. Advanced multifunctional aqueous rechargeable batteries design: From materials and devices to systems[J]. Adv Mater, 2022, 34(5): e2104327.

    [6] [6] FU N, XU Y T, ZHANG S, et al. Electrode materials for aqueous multivalent metal-ion batteries: Current status and future prospect[J]. J Energy Chem, 2022, 67: 563-584.

    [7] [7] WAN F, NIU Z Q. Design strategies for vanadium-based aqueous zinc-ion batteries[J]. Angew Chem Int Ed Engl, 2019, 58(46): 16358-16367.

    [8] [8] MATHEW V, SAMBANDAM B, KIM S, et al. Manganese and vanadium oxide cathodes for aqueous rechargeable zinc-ion batteries: A focused view on performance, mechanism, and developments[J]. ACS Energy Lett, 2020, 5(7): 2376-2400.

    [9] [9] GAO Y N, YANG H Y, BAI Y, et al. Mn-based oxides for aqueous rechargeable metal ion batteries[J]. J Mater Chem A, 2021, 9(19): 11472-11500.

    [10] [10] JIANG M W, HOU Z D, REN L B, et al. Prussian blue and its analogues for aqueous energy storage: From fundamentals to advanced devices[J]. Energy Storage Mater, 2022, 50: 618-640.

    [11] [11] TIE Z W, NIU Z Q. Design strategies for high-performance aqueous Zn/organic batteries[J]. Angew Chem Int Ed Engl, 2020, 59(48): 21293-21303.

    [12] [12] ZHANG K, HAN X P, HU Z, et al. Nanostructured Mn-based oxides for electrochemical energy storage and conversion[J]. Chem Soc Rev, 2015, 44(3): 699-728.

    [13] [13] XIONG T, ZHANG Y X, LEE W S V, et al. Defect engineering in manganese-based oxides for aqueous rechargeable zinc-ion batteries: A review[J]. Adv Energy Mater, 2020, 10(34): 2001769.

    [14] [14] SONG M, TAN H A, CHAO D L, et al. Recent advances in Zn-ion batteries[J]. Adv Funct Materials, 2018, 28(41): 1802564.

    [15] [15] KORDESCH K, GSELLMANN J, PERI M, et al. The rechargeability of manganese dioxide in alkaline electrolyte[J]. Electrochim Acta, 1981, 26(10): 1495-1504.

    [16] [16] HERTZBERG B J, HUANG A, HSIEH A, et al. Effect of multiple cation electrolyte mixtures on rechargeable Zn-MnO2 alkaline battery[J]. Chem Mater, 2016, 28(13): 4536-4545.

    [17] [17] MANICKAM M, SINGH P, ISSA T B, et al. Lithium insertion into manganese dioxide electrode in MnO2/Zn aqueous battery[J]. J Power Sources, 2004, 130(1-2): 254-259.

    [18] [18] XU C J, LI B H, DU H D, et al. Energetic zinc ion chemistry: The rechargeable zinc ion battery[J]. Angew Chem Int Ed Engl, 2012, 51(4): 933-935.

    [19] [19] PAN H L, SHAO Y Y, YAN P F, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions[J]. Nat Energy, 2016, 1: 16039.

    [20] [20] SUN W, WANG F, HOU S, et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion[J]. J Am Chem Soc, 2017, 139(29): 9775-9778.

    [21] [21] LI Y, WANG S Y, SALVADOR J R, et al. Reaction mechanisms for long-life rechargeable Zn/MnO2 batteries[J]. Chem Mater, 2019, 31(6): 2036-2047.

    [22] [22] TANG W, HOU Y Y, WANG F X, et al. LiMn2O4 nanotube as cathode material of second-level charge capability for aqueous rechargeable batteries[J]. Nano Lett, 2013, 13(5): 2036-2040.

    [23] [23] LIU Y, QIAO Y, ZHANG W X, et al. High-performance aqueous sodium-ion batteries with K0.27MnO2 cathode and their sodium storage mechanism[J]. Nano Energy, 2014, 5: 97-104.

    [24] [24] NAM K W, KIM S, LEE S, et al. The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries[J]. Nano Lett, 2015, 15(6): 4071-4079.

    [25] [25] WANG S, YUAN Z S, ZHANG X, et al. Non-metal ion co-insertion chemistry in aqueous Zn/MnO2 batteries[J]. Angew Chem Int Ed Engl, 2021, 60(13): 7056-7060.

    [26] [26] CHEN W, LI G D, PEI A, et al. A manganese-hydrogen battery with potential for grid-scale energy storage[J]. Nat Energy, 2018, 3(5): 428-435.

    [27] [27] CHAO D L, ZHOU W H, YE C, et al. An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage[J]. Angew Chem Int Ed Engl, 2019, 58(23): 7823-7828.

    [28] [28] LEI J F, YAO Y X, WANG Z Y, et al. Towards high-areal-capacity aqueous zinc-manganese batteries: Promoting MnO2 dissolution by redox mediators[J]. Energy Environ Sci, 2021, 14(8): 4418-4426.

    [29] [29] YE X L, HAN D L, JIANG G Y, et al. Unraveling the deposition/dissolution chemistry of MnO2 for high-energy aqueous batteries[J]. Energy Environ Sci, 2023, 16(3): 1016-1023.

    [30] [30] CHAO D L, YE C, XIE F X, et al. Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density[J]. Adv Mater, 2020, 32(25): e2001894.

    [31] [31] WU C, GU S C, ZHANG Q H, et al. Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery[J]. Nat Commun, 2019, 10(1): 73.

    [32] [32] DEUTSCHER R L, FLORENCE T M, WOODS R. Investigations on an aqueous lithium secondary cell[J]. J Power Sources, 1995, 55(1): 41-46.

    [33] [33] MANICKAM M, MITCHELL D R G, SINGH P. TEM investigation of MnO2 cathode containing TiS2 and its influence in aqueous lithium secondary battery[J]. Electrochim Acta, 2007, 52(9): 3294-3298.

    [34] [34] MINAKSHI M, NALLATHAMBY K, MITCHELL D R G. Electrochemical characterization of an aqueous lithium rechargeable battery: The effect of CeO2 additions to the MnO2 cathode[J]. J Alloys Compd, 2009, 479(1-2): 87-90.

    [35] [35] MINAKSHI M, MITCHELL D, PRINCE K. Incorporation of TiB2 additive into MnO2 cathode and its influence on rechargeability in an aqueous battery system[J]. Solid State Ion, 2008, 179(9-10): 355-361.

    [36] [36] MINAKSHI M, MITCHELL D R G. The influence of bismuth oxide doping on the rechargeability of aqueous cells using MnO2 cathode and LiOH electrolyte[J]. Electrochim Acta, 2008, 53(22): 6323-6327.

    [37] [37] MINAKSHI M. Alkaline-earth oxide modified MnO2 cathode: enhanced performance in an aqueous rechargeable battery[J]. Ind Eng Chem Res, 2011, 50(14): 8792-8795.

    [38] [38] LI W, DAHN J R, WAINWRIGHT D S. Rechargeable lithium batteries with aqueous electrolytes[J]. Science, 1994, 264(5162): 1115-1118.

    [39] [39] YUAN A B, TIAN L, XU W M, et al. Al-doped spinel LiAl0.1Mn1.9O4 with improved high-rate cyclability in aqueous electrolyte[J]. J Power Sources, 2010, 195(15): 5032-5038.

    [40] [40] WANG F X, XIAO S Y, SHI Y, et al. Spinel LiNixMn2-xO4 as cathode material for aqueous rechargeable lithium batteries[J]. Electrochim Acta, 2013, 93: 301-306.

    [41] [41] CVJETICANIN N, STOJKOVIC I, MITRIC M, et al. Cyclic voltammetry of LiCr0.15Mn1.85O4 in an aqueous LiNO3 solution[J]. J Power Sources, 2007, 174(2): 1117-1120.

    [42] [42] ZHAO M S, ZHANG B, HUANG G L, et al. Electrochemical performance of modified LiMn2O4 used as cathode material for an aqueous rechargeable lithium battery[J]. Energy Fuels, 2012, 26(2): 1214-1219.

    [43] [43] BUBULINCA C, SAPURINA I, KAZANTSEVA N E, et al. Fabrication of a flexible binder-free lithium manganese oxide cathode for secondary Li-ion batteries[J]. J Phys Chem Solids, 2020, 137: 109222.

    [44] [44] WILLENBERG S, ROSS N. Enhanced electrochemistry of carbon supported functionalized nanocomposite cathode for aqueous lithium-ion batteries[J]. Electroanalysis, 2020, 32(12): 2976-2981.

    [45] [45] ZHU X A, WU X W, DOAN T N L, et al. Binder-free flexible LiMn2O4/carbon nanotube network as high power cathode for rechargeable hybrid aqueous battery[J]. J Power Sources, 2016, 326: 498-504.

    [46] [46] SUO L M, BORODIN O, GAO T, et al. Water-in-salt electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938-943.

    [47] [47] XIE J, LIANG Z J, LU Y C. Molecular crowding electrolytes for high-voltage aqueous batteries[J]. Nat Mater, 2020, 19(9): 1006-1011.

    [48] [48] LIN R, KE C M, CHEN J E, et al. Asymmetric donor-acceptor molecule-regulated core-shell-solvation electrolyte for high-voltage aqueous batteries[J]. Joule, 2022, 6(2): 399-417.

    [49] [49] WANG Y, WANG T R, DONG D J, et al. Enabling high-energy-density aqueous batteries with hydrogen bond-anchored electrolytes[J]. Matter, 2021, 5(1): 162-179.

    [50] [50] LI Q, YANG C Y, ZHANG J X, et al. Controlling intermolecular interaction and interphase chemistry enabled sustainable water-tolerance LiMn2O4||Li4Ti5O12 batteries[J]. Angew Chem Int Ed Engl, 2022, 61(49): e202214126.

    [51] [51] WANG P F, JIN T, ZHANG J X, et al. Elucidation of the Jahn-Teller effect in a pair of sodium isomer[J]. Nano Energy, 2020, 77: 105167.

    [52] [52] LU Y M, WU X N, LI Z, et al. Na+/K+-codoped amorphous manganese oxide with enhanced performance for aqueous sodium-ion battery[J]. J Alloys Compd, 2023, 937: 168344.

    [53] [53] SHAN X Q, GUO F H, PAGE K, et al. Framework doping of Ni enhances pseudocapacitive Na-ion storage of (Ni)MnO2 layered birnessite[J]. Chem Mater, 2019, 31(21): 8774-8786.

    [54] [54] SHAN X Q, CHARLES D S, XU W Q, et al. Biphase cobalt-manganese oxide with high capacity and rate performance for aqueous sodium-ion electrochemical energy storage[J]. Adv Funct Materials, 2018, 28(3): 1703266.

    [55] [55] LI Z, YOUNG D, XIANG K, et al. Towards high power high energy aqueous sodium-ion batteries: The NaTi2(PO4)3/Na0.44MnO2 system[J]. Adv Energy Mater, 2013, 3(3): 290-294.

    [56] [56] CHUA R, CAI Y, KOU Z K, et al. 1.3-V superwide potential window sponsored by Na-Mn-O plates as cathodes towards aqueous rechargeable sodium-ion batteries[J]. Chem Eng J, 2019, 370: 742-748.

    [57] [57] WANG Y S, MU L Q, LIU J E, et al. A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries[J]. Adv Energy Mater, 2015, 5(22): 1501005.

    [58] [58] ZHANG K, KIM D, HU Z, et al. Manganese based layered oxides with modulated electronic and thermodynamic properties for sodium ion batteries[J]. Nat Commun, 2019, 10(1): 5203.

    [59] [59] SHAN X Q, GUO F H, CHARLES D S, et al. Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite[J]. Nat Commun, 2019, 10(1): 4975.

    [60] [60] ZHANG B H, LIU Y, CHANG Z, et al. Nanowire Na0.35MnO2 from a hydrothermal method as a cathode material for aqueous asymmetric supercapacitors[J]. J Power Sources, 2014, 253: 98-103.

    [61] [61] ZHANG B H, LIU Y, WU X W, et al. An aqueous rechargeable battery based on zinc anode and Na0.95MnO2[J]. Chem Commun, 2014, 50(10): 1209-1211.

    [62] [62] KARIKALAN N, KARUPPIAH C, CHEN S M, et al. Three-dimensional fibrous network of Na0.21MnO2 for aqueous sodium-ion hybrid supercapacitors[J]. Chemistry, 2017, 23(10): 2379-2386.

    [63] [63] YUAN Y F, SHARPE R, HE K, et al. Understanding intercalation chemistry for sustainable aqueous zinc-manganese dioxide batteries[J]. Nat Sustain, 2022, 5(10): 890-898.

    [64] [64] LIU W B, ZHANG X Y, HUANG Y F, et al. β-MnO2 with proton conversion mechanism in rechargeable zinc ion battery[J]. J Energy Chem, 2021, 56: 365-373.

    [65] [65] GUO C, ZHOU Q H, LIU H M, et al. A case study of β- and δ-MnO2 with different crystallographic forms on ion-storage in rechargeable aqueous zinc ion battery[J]. Electrochim Acta, 2019, 324: 134867.

    [66] [66] CHENG F Y, CHEN J, GOU X L, et al. High-power alkaline Zn-MnO2 batteries using γ-MnO2 nanowires/nanotubes and electrolytic zinc powder[J]. Adv Mater, 2005, 17(22): 2753-2756.

    [67] [67] HAN M M, HUANG J W, LIANG S Q, et al. Oxygen defects in β-MnO2 enabling high-performance rechargeable aqueous zinc/manganese dioxide battery[J]. iScience, 2020, 23(1): 100797.

    [68] [68] WEI C G, XU C J, LI B H, et al. Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage[J]. J Phys Chem Solids, 2012, 73(12): 1487-1491.

    [69] [69] WANG D H, WANG L F, LIANG G J, et al. A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery[J]. ACS Nano, 2019, 13(9): 10643-10652.

    [70] [70] HUANG J H, WANG Z, HOU M Y, et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery[J]. Nat Commun, 2018, 9(1): 2906.

    [71] [71] NAM K W, KIM H, CHOI J H, et al. Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries[J]. Energy Environ Sci, 2019, 12(6): 1999-2009.

    [72] [72] XIE Q X, CHENG G, XUE T, et al. Alkali ions pre-intercalation of δ-MnO2 nanosheets for high-capacity and stable Zn-ion battery[J]. Mater Today Energy, 2022, 24: 100934.

    [73] [73] ZHOU S H, WU X S, DU H X, et al. Dual metal ions and water molecular pre-intercalated δ-MnO2 spherical microflowers for aqueous zinc ion batteries[J]. J Colloid Interface Sci, 2022, 623: 456-466.

    [74] [74] JIAO Y D, KANG L Q, BERRY-GAIR J, et al. Enabling stable MnO2 matrix for aqueous zinc-ion battery cathodes[J]. J Mater Chem A, 2020, 8(42): 22075-22082.

    [75] [75] JING F Y, LIU Y N, SHANG Y R, et al. Dual ions intercalation drives high-performance aqueous Zn-ion storage on birnessite-type manganese oxides cathode[J]. Energy Storage Mater, 2022, 49: 164-171.

    [76] [76] ALFARUQI M H, ISLAM S, MATHEW V, et al. Ambient redox synthesis of vanadium-doped manganese dioxide nanoparticles and their enhanced zinc storage properties[J]. Appl Surf Sci, 2017, 404: 435-442.

    [77] [77] WANG L, WU Q Y, ABRAHAM A, et al. Silver-containing α-MnO2 Nanorods: Electrochemistry in rechargeable aqueous Zn-MnO2 batteries[J]. J Electrochem Soc, 2019, 166(15): A3575-A3584.

    [78] [78] XU D W, LI B H, WEI C G, et al. Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc ions[J]. Electrochim Acta, 2014, 133: 254-261.

    [79] [79] HU P, YAN M Y, WANG X P, et al. Single-nanowire electrochemical probe detection for internally optimized mechanism of porous graphene in electrochemical devices[J]. Nano Lett, 2016, 16(3): 1523-1529.

    [80] [80] GUO R T, NI L S, ZHANG H, et al. MnO2 nanowires anchored with graphene quantum dots for stable aqueous zinc-ion batteries[J]. ACS Appl Energy Mater, 2021, 4(10): 10940-10947.

    [81] [81] WANG C, ZENG Y X, XIAO X A, et al. γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery[J]. J Energy Chem, 2020, 43: 182-187.

    [82] [82] ZENG Y X, ZHANG X Y, MENG Y, et al. Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery[J]. Adv Mater, 2017, 29(26): 1700274.

    [83] [83] LIU Y, ZHOU X M, LIU R, et al. Tailoring three-dimensional composite architecture for advanced zinc-ion batteries[J]. ACS Appl Mater Interfaces, 2019, 11(21): 19191-19199.

    [84] [84] ZHU X D, CAO Z Y, WANG W J, et al. Superior-performance aqueous zinc-ion batteries based on the in situ growth of MnO2 nanosheets on V2CTx MXene[J]. ACS Nano, 2021, 15(2): 2971-2983.

    [85] [85] BI S, WU Y, CAO A, et al. Free-standing three-dimensional carbon nanotubes/amorphous MnO2 cathodes for aqueous zinc-ion batteries with superior rate performance[J]. Mater Today Energy, 2020, 18: 100548.

    [86] [86] DENG S Z, TIE Z W, YUE F, et al. Rational design of ZnMn2O4 quantum dots in a carbon framework for durable aqueous zinc-ion batteries[J]. Angew Chem Int Ed Engl, 2022, 61(12): e202115877.

    [87] [87] ISLAM S, ALFARUQI M H, SONG J J, et al. Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications[J]. J Energy Chem, 2017, 26(4): 815-819.

    [88] [88] ZHAO Y, ZHOU R K, SONG Z H, et al. Interfacial designing of MnO2 half-wrapped by aromatic polymers for high-performance aqueous zinc-ion batteries[J]. Angew Chem Int Ed Engl, 2022, 61(49): e202212231.

    [89] [89] YANG H, WAN Y, SUN K, et al. Reconciling mass loading and gravimetric performance of MnO2 cathodes by 3D-printed carbon structures for zinc-ion batteries[J]. Adv Funct Materials, 2023, 33(26): 2215076.

    [90] [90] CHEN J C, LIAO L, SUN B, et al. Manganese hexacyanoferrate anchoring MnO2 with enhanced stability for aqueous zinc-ion batteries[J]. J Alloys Compd, 2022, 903: 163833.

    [91] [91] HUANG C, WANG Q F, TIAN G F, et al. Oxygen vacancies-enriched Mn3O4 enabling high-performance rechargeable aqueous zinc-ion battery[J]. Mater Today Phys, 2021, 21: 100518.

    [92] [92] ZHANG Y, DENG S J, PAN G X, et al. Introducing oxygen defects into phosphate ions intercalated manganese dioxide/vertical multilayer graphene arrays to boost flexible zinc ion storage[J]. Small Meth, 2020, 4(6): 1900828.

    [93] [93] ZHANG H Z, WANG J, LIU Q Y, et al. Extracting oxygen anions from ZnMn2O4: Robust cathode for flexible all-solid-state Zn-ion batteries[J]. Energy Storage Mater, 2019, 21: 154-161.

    [94] [94] ZHANG Y N, LIU Y P, LIU Z H, et al. MnO2 cathode materials with the improved stability via nitrogen doping for aqueous zinc-ion batteries[J]. J Energy Chem, 2022, 64: 23-32.

    [95] [95] XIONG T, YU Z G, WU H J, et al. Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery[J]. Adv Energy Mater, 2019, 9(14): 1803815.

    [96] [96] ZHU C Y, FANG G Z, LIANG S Q, et al. Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc-ion battery[J]. Energy Storage Mater, 2020, 24: 394-401.

    [97] [97] ZHANG N, CHENG F Y, LIU Y C, et al. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery[J]. J Am Chem Soc, 2016, 138(39): 12894-12901.

    [98] [98] LV W, MENG J W, LI Y M, et al. Inexpensive and eco-friendly nanostructured birnessite-type δ-MnO2: A design strategy from oxygen defect engineering and K+ pre-intercalation[J]. Nano Energy, 2022, 98: 107274.

    [99] [99] YANG H, ZHOU W H, CHEN D, et al. The origin of capacity fluctuation and rescue of dead Mn-based Zn-ion batteries: A Mn-based competitive capacity evolution protocol[J]. Energy Environ Sci, 2022, 15(3): 1106-1118.

    [100] [100] YUAN C L, ZHANG Y, PAN Y E, et al. Investigation of the intercalation of polyvalent cations (Mg2+, Zn2+) into λ-MnO2 for rechargeable aqueous battery[J]. Electrochim Acta, 2014, 116: 404-412.

    [101] [101] WANG M Q, YAGI S. Layered birnessite MnO2 with enlarged interlayer spacing for fast Mg-ion storage[J]. J Alloys Compd, 2020, 820: 153135.

    [102] [102] XIONG P, MA R Z, SAKAI N, et al. Redox active cation intercalation/deintercalation in two-dimensional layered MnO2 nanostructures for high-rate electrochemical energy storage[J]. ACS Appl Mater Interfaces, 2017, 9(7): 6282-6291.

    [103] [103] ZHANG Y Q, LIU G A, ZHANG C H, et al. Low-cost MgFexMn2-xO4 cathode materials for high-performance aqueous rechargeable magnesium-ion batteries[J]. Chem Eng J, 2020, 392: 123652.

    [104] [104] ZHANG H Y, CAO D X, BAI X. Ni-Doped magnesium manganese oxide as a cathode and its application in aqueous magnesium-ion batteries with high rate performance[J]. Inorg Chem Front, 2020, 7(11): 2168-2177.

    [105] [105] ASIF M, RASHAD M, ALI Z, et al. Ni-doped MnO2/CNT nanoarchitectures as a cathode material for ultra-long life magnesium/lithium hybrid ion batteries[J]. Mater Today Energy, 2018, 10: 108-117.

    [106] [106] ZHANG D L, DU D G, ZHANG J H, et al. Porous spinel magnesium manganese oxide/multiwalled carbon nanotubes composite synthesized by electrochemical conversion as high-performance cathode for aqueous magnesium ion battery[J]. J Electrochem Soc, 2022, 169(4): 040530.

    [107] [107] ZHANG H Y, YE K, SHAO S X, et al. Octahedral magnesium manganese oxide molecular sieves as the cathode material of aqueous rechargeable magnesium-ion battery[J]. Electrochim Acta, 2017, 229: 371-379.

    [108] [108] ZHANG H Y, YE K, HUANG X M, et al. Preparation of Mg1.1Mn6O12·4.5H2O with nanobelt structure and its application in aqueous magnesium-ion battery[J]. J Power Sources, 2017, 338: 136-144.

    [109] [109] ZHANG H Y, YE K, ZHU K, et al. Assembly of aqueous rechargeable magnesium ions battery capacitor: the nanowire Mg-OMS-2/graphene as cathode and activated carbon as anode[J]. ACS Sustainable Chem Eng, 2017, 5(8): 6727-6735.

    [110] [110] ZHANG H, YE K, CANG R, et al. The synthesis of 1×1 magnesium octahedral molecular sieve with controllable size and shape for aqueous magnesium ion battery cathode material[J]. J Electroanal Chem, 2017, 807: 37-44..

    [111] [111] JOSEPH J, NERKAR J, TANG C, et al. Reversible intercalation of multivalent Al3+ ions into potassium-rich cryptomelane nanowires for aqueous rechargeable Al-ion batteries[J]. ChemSusChem, 2019, 12(16): 3753-3760.

    [112] [112] HE S M, WANG J E, ZHANG X, et al. A high-energy aqueous aluminum-manganese battery[J]. Adv Funct Materials, 2019, 29(45): 1905228.

    [113] [113] YAN C S, LV C D, WANG L G, et al. Architecting a stable high-energy aqueous Al-ion battery[J]. J Am Chem Soc, 2020, 142(36): 15295-15304.

    [114] [114] YANG J L, GONG W B, GENG F X. Defect modulation in cobalt manganese oxide sheets for stable and high-energy aqueous aluminum-ion batteries[J]. Adv Funct Materials, 2023, 33(27): 2301202.

    [115] [115] XU Y, MA J L, JIANG T L, et al. Tuning electrolyte solvation structures to enable stable aqueous Al/MnO2 battery[J]. Energy Storage Mater, 2022, 47: 113-121.

    [116] [116] YAN L, HUANG J H, GUO Z W, et al. Solid-state proton battery operated at ultralow temperature[J]. ACS Energy Lett, 2020, 5(2): 685-691.

    [117] [117] YANG X R, NI Y X, LU Y, et al. Designing quinone-based anodes with rapid kinetics for rechargeable proton batteries[J]. Angew Chem Int Ed Engl, 2022, 61(39): e202209642.

    [118] [118] SUN T J, DU H H, ZHENG S B, et al. High power and energy density aqueous proton battery operated at -90 ℃[J]. Adv Funct Materials, 2021, 31(16): 2010127.

    [119] [119] SONG Y, PAN Q, LV H Z, et al. Ammonium-ion storage using electrodeposited manganese oxides[J]. Angew Chem Int Ed Engl, 2021, 60(11): 5718-5722.

    [120] [120] LU T H, ZENG C H, ZHANG H Z, et al. Valence engineering enhancing NH4 + storage capacity of manganese oxides[J]. Small, 2023, 19(14): e2206727.

    Tools

    Get Citation

    Copy Citation Text

    DU Lingyu, BI Songshan, NIU Zhiqiang. Progress and Challenges of Manganese Oxides in Aqueous Rechargeable Batteries[J]. Journal of the Chinese Ceramic Society, 2024, 52(1): 273

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: --

    Accepted: --

    Published Online: Jul. 30, 2024

    The Author Email: Zhiqiang NIU (zqniu@nankai.edu.cn)

    DOI:

    CSTR:32186.14.

    Topics