Journal of the Chinese Ceramic Society, Volume. 50, Issue 12, 3260(2022)

In-situ Fabrication of Sm0.20NixCe0.80-xO2-δ Anode Materials for High-Performance Intermediate Temperatures Solid Oxide Fuel Cell

GAN Tian1...2,*, MEI Jie1, and LI Yongdan23 |Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(30)

    [1] [1] LIANG M, ZHU Y, SONG Y, et al. A new durable surface nanoparticles-modified merovskite cathode for protonic ceramic fuel cells from selective cation exsolution under oxidizing atmosphere[J].

    [2] [2] NEAGU D, OH T S, MILLER D N, et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution[J]. Nat Commun, 2015, 6(1): 8120.

    [3] [3] DU Z, GONG Y, ZHAO H, et al. Unveiling the interface structure of the exsolved Co—Fe alloy nanoparticles from double perovskite and Its application in solidoxide fuel cells[J]. ACS Appl Mater Interfaces, 2021, 13(2): 3287-3294.

    [4] [4] SUN Y F, ZHANG Y Q, CHEN J, et al. New opportunity for in situ exsolution of metallic nanoparticles on perovskite parent[J]. Nano Lett, 2016, 16(8): 5303-5309.

    [5] [5] KIM K J, RATH M K, KWAK H H, et al. A highly active and redox-stable SrGdNi0.2Mn0.8O4±δ anode with in situ exsolution of nanocatalysts[J]. ACS Catal, 2019, 9(2): 1172-1182.

    [6] [6] QIN M, XIAO Y, YANG H, et al. Ru/Nb co-doped perovskite anode: Achieving good coking resistance in hydrocarbon fuels via core.shell nanocatalysts exsolution[J]. Appl Catal B, 2021, 299: 120613.

    [7] [7] KIM J H, KIM J K, LIU J, et al. Nanoparticle ex-solution for supported catalysts: materials design, mechanism and future perspectives[J]. ACS Nano, 2021, 15(1): 81-110.

    [8] [8] ISLAM Q A, PAYDAR S, AKBAR N, et al. Nanoparticle exsolution in perovskite oxide and its sustainable electrochemical energy systems[J]. J Power Sources, 2021, 492: 229626.

    [9] [9] YANG Y, LI J, SUN Y. The metal/oxide heterointerface delivered by solid-based exsolution strategy: A review[J]. Chem Eng J, 2022, 440: 135868.

    [10] [10] AGüERO F N, BELTRáN A M, FERNáNDEZ M A, et al. Surface nickel particles generated by exsolution from a perovskite structure[J]. J Solid State Chem, 2019, 273: 75-80.

    [11] [11] QI W, XIE K, LIU M, et al. Single-phase nickel-doped ceria cathode with in situ grown nickel nanocatalyst for direct high-temperature carbon dioxide electrolysis[J]. RSC Adv, 2014, 4(76): 40494-40504.

    [12] [12] LI Q, WANG X, LIU C, et al. A direct-methane solid oxide fuel cell with a functionally engineered Ni―Fe metal support[J]. J Power Sources, 2022, 537: 231533.

    [13] [13] MYUNG J, SHIN T H, HUANG X, et al. Enhancement of redox stability and electrical conductivity by doping various metals on ceria, Ce1-xMxO2.δ (M=Ni, Cu, Co, Mn, Ti, Zr)[J]. Int J Hydrogen Energy, 2015, 40(35): 12003-12008.

    [14] [14] DíAZ-ABURTO I, GRACIA F, COLET-LAGRILLE M. Mo-doped CeO2 synthesized by the combustion method for carbon-air solid oxide fuel cell (CA-SOFC) applications[J]. Fuel Cells, 2019, 19(2): 147-159.

    [15] [15] LI Q, WANG X, LI C, et al. A direct CH4 metal-supported solid oxide fuel cell with an engineered Ni/Gd-doped CeO2 anode containing Ni and MnO nanoparticles[J]. Compos Part B: Eng, 2022, 229: 109462.

    [16] [16] ZHI X, GAN T, HOU N, et al. ZnO-promoted surface diffusion on NiO.Ce0.8Sm0.2O1.9 anode for solid oxide fuel cell[J]. J Power Sources, 2019, 423: 290.

    [17] [17] TAN J, LEE D, AHN J, et al. Thermally driven in situ exsolution of Ni nanoparticles from (Ni, Gd)CeO2 for high-performance solid oxide fuel cells[J]. J Mater Chem A, 2018, 6(37): 18133-18142.

    [18] [18] SHEN X, CHEN T, BISHOP S R, et al. Redox cycling induced Ni exsolution in Gd0.1Ce0.8Ni0.1O2.(Sr0.9La0.1)0.9Ti0.9Ni0.1O3 composite solid oxide fuel cell anodes[J]. J Power Sources, 2017, 370: 122-130.

    [19] [19] STEIGER P, BURNAT D, MADI H, et al. Sulfur poisoning recovery on a solid oxide fuel cell anode material through reversible segregation of nickel[J]. Chem Mater, 2019, 31(3): 748-758.

    [20] [20] SHI N, XIE Y, YANG Y, et al. Review of anodic reactions in hydrocarbon fueled solid oxide fuel cells and strategies to improve anode performance and stability[J]. Mater Renew Sustain Energy, 2020, 9(1): 6.

    [21] [21] HAN Z, YANG Z, HAN M. Comprehensive investigation of methane conversion over Ni(111) surface under a consistent DFT framework: Implications for anti-coking of SOFC anodes[J]. Appl Surf Sci, 2019,

    [22] [22] SHARMA Y C, KUMAR A, PRASAD R, et al. Ethanol steam reforming for hydrogen production: Latest and effective catalyst modification strategies to minimize carbonaceous deactivation[J]. Renewable Sustainable Energy Rev, 2017, 74: 89-103.

    [23] [23] WEI T, JIA L, LUO J L, et al. CO2 dry reforming of CH4 with Sr and Ni co-doped LaCrO3 perovskite catalysts[J]. Appl Surf Sci, 2020, 506: 144699.

    [24] [24] YE R-P, LI Q, GONG W, et al. High-performance of nanostructured Ni/CeO2 catalyst on CO2 methanation[J]. Appl Catal B, 2020, 268: 118474.

    [25] [25] GAN T, DING G, ZHI X, et al. A LaNi0.9Co0.1O3 coated Ce0.8Sm0.2O1.9 composite anode for solid oxide fuel cells fed with methanol[J]. Catal Today, 2019, 327: 220-225.

    [26] [26] BISHOP S R, DUNCAN K L, WACHSMAN E D. Surface and bulk oxygen non-stoichiometry and bulk chemical expansion in gadolinium-doped cerium oxide[J]. Acta Mater, 2009, 57(12): 3596-3605.

    [27] [27] GUPTA A, WAGHMARE U V, HEGDE M S. Correlation of oxygen storage capacity and structural distortion in transition-metal-, noble-metal-, and rare-earth-ion-substituted CeO2 from first principles calculation[J]. Chem Mater, 2010, 22(18): 5184-5198.

    [28] [28] COURTOIS X, PERRICHON V. Distinct roles of copper in bimetallic copper-rhodium three-way catalysts deposited on redox supports[J]. Appl Catal B, 2005, 57(1): 63-72.

    [29] [29] LIU T, ZHAO Y, ZHANG X, et al. Robust redox-reversible perovskite type steam electrolyser electrode decorated with in situ exsolved metallic nanoparticles[J]. J Mater Chem A, 2020, 8(2): 582-591.

    [30] [30] MENG X, WANG Y, ZHAO Y, et al. In-situ exsolution of nanoparticles from Ni substituted Sr2Fe1.5Mo0.5O6 perovskite oxides with different Ni doping contents[J]. Electrochim Acta, 2020, 348: 136351.

    Tools

    Get Citation

    Copy Citation Text

    GAN Tian, MEI Jie, LI Yongdan. In-situ Fabrication of Sm0.20NixCe0.80-xO2-δ Anode Materials for High-Performance Intermediate Temperatures Solid Oxide Fuel Cell[J]. Journal of the Chinese Ceramic Society, 2022, 50(12): 3260

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: May. 20, 2022

    Accepted: --

    Published Online: Jan. 20, 2023

    The Author Email: Tian GAN (gantiantg@usts.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20220415

    Topics