Infrared and Laser Engineering, Volume. 49, Issue S2, 20200381(2020)

Application and development of Lidar to detect the vertical distribution of marine materials

Li Xiaolong1、* and Zhao Chaofang2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(49)

    [1] [1] Knestrick G L, Curcio J A. Transmission of ruby laser light through water [J]. Journal of The Optical Society of America, 1963: 53(2): 514.

    [2] [2] Churnside J H. Review of profiling oceanographic lidar [J]. Optical Engineering, 2014, 53(5): 051405.

    [3] [3] Allouis T, Bailly J, Pastol Y, et al. Comparison of LiDAR waveform processing methods for very shallow water bathymetry using Raman, near-infrared and green signals [J]. Earth Surf Process and Landforms, 2010, 35(6): 640-650.

    [4] [4] Irish J L, Lillycrop W J. Scanning laser mapping of the coastal zone: the SHOALS system[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 1999, 54(2-3): 123-129.

    [6] [6] Lu X, Hu Y, Trepte C, et al. Ocean subsurface studies with the CALIPSO spaceborne lidar [J]. J Geophys Res Oceans, 2014, 119: 4305-4317.

    [7] [7] Behrenfeld M J, Gaube P, Della Penna A, et al. Global satellite-observed daily vertical migrations of ocean animals[J]. Nature, 2019, 576: 257-261.

    [9] [9] Churnside J H, Sullivan J M, Twardowski M S. Lidar extinction-to-backscatter ratio of the ocean [J]. Optics Express, 2014, 22(15): 18698-18706.

    [12] [12] Phillips D M, Abbort R H, Penny M F. Remote sensing of sea water turbility with a airborne laser system [J]. JPhys(D), 1984, 17(8): 1749-1758.

    [13] [13] Billard B, Abbort R H, Penny M F. Airborne estimation of sea turbidity parameters from the WRELADS laser airborne depth sounder [J]. Applied Optics, 1986 , 25(13): 2080-2088.

    [14] [14] Muirhead K, Cracknell A P. Airborne lidar bathymetry [J]. International Journal of Remote Sensing, 1986, 7(5): 597-614.

    [15] [15] Hoge F E, Swift R N. Airborne detection of oceanic turbidity cell structure using depth-resolved laser-induced water Raman backscatter [J]. Applied Optics, 1983, 22(23): 3778-3786.

    [16] [16] Miller M G, Lang R E. Real time hydrography data processing [C]//Proceedings of the Fourth Laser Hydrography Symposium, 1981: 396-417.

    [17] [17] Penny M F, Billard B, Abbot R H. LADS——the Australian laser airborne depth sounder[J]. International Journal of Remote Sensing, 1989, 10(9): 1463-1479

    [18] [18] Billard B, Abbot R H, Penny M F. Airborne estimation of sea turbidity parameters from the WRELADS laser airborne depth sounder[J]. Applied Optics, 1986, 25(13): 2080-2088.

    [21] [21] Mitra K, Churnside J H. Transient radiative transfer equation applied to oceanographic lidar[J]. Applied Optics, 1999, 38(6): 889-895.

    [22] [22] Hoge F E. Oceanic inherent optical properties: proposed single laser lidar and retrieval theory [J]. Applied Optics, 2005, 44(34): 7483-7486.

    [23] [23] Dolin L S. Theory of lidar method for measurement of the modulation transfer function of water layers [J]. Applied Optics, 2013, 52(2): 199-207.

    [24] [24] Saylam K, Brown R A, Hupp J R. Assessment of depth and turbidity with airborne Lidar bathymetry and multiband satellite imagery in shallow water bodies of the Alaskan North Slope [J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 58: 191-200.

    [25] [25] Zhao X, Zhao J, Zhang H, et al. Remote sensing of suspended sediment concentrations based on the waveform decomposition of airborne LiDAR bathymetry [J]. Remote Ssensing, 2018, 10(2): 247.

    [26] [26] Richter K, Maas H, Westfeld P, et al. An approach to determining turbidity and correcting for signal attenuation in airborne lidar bathymetry [J]. PFG-Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2017, 85(1): 31-40.

    [27] [27] Li Kaipeng, He Yan, Ma Jian. A dual-wavelength ocean lidar for vertical profiling of oceanic backscatter and attenuation [J]. Remote Ssensing, 2020, 12(17): 1-20.

    [28] [28] Kim H H. New algae mapping technique by the use of an airborne laser fluorosensor [J]. Applied Optics,1973, 12(7): 1454-1459.

    [29] [29] Hoge F E, Swift R N. Oil film thickness measurement using airborne laser-induced water Raman backscatter [J]. Applied Optics, 1980, 19(19): 3269-3281.

    [30] [30] Hoge F E, Swift R N. Airborne simultaneous spectroscopic detection of laser-induced water Raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments [J]. Applied Optics, 1981, 20(18): 3197-3205.

    [33] [33] Chen P, Wang T Y, Pan D L, et al. Laser induced fluorescence technique for detecting organic matter in East China Sea [C]//Proceedings of SPIE, 2017, 10422Y: 928609.

    [34] [34] Schulien J A, Behrenfeld M J, Hair J W, et al. Vertically- resolved phytoplankton carbon and net primary production from a high spectral resolution lidar [J]. Optics Express,2017, 25(12): 13577-13587.

    [35] [35] Liu Dong, Zhou Yadi, Yang Yongying, et al. High-spectral-resolution lidar for ocean ecosystem studies[C]//Proceedings of SPIE, 2016: 983214.

    [36] [36] Hoge F E, Lyon P E, Wright C W, et al. Chlorophyll biomass in the global ocean: airborne lidar retrieval using fluorescence of both chlorophyll and chromophic dissolved organic matter[J]. Applied Optics, 2005, 44(14): 2857-2862.

    [37] [37] Brown C E, Fingas M F. Turning over a new LEAF: The next generation of laser fluorosensors [C]//International Oil Spill Conference, 1997: 906-907.

    [40] [40] Chen P, Pan D L, Wang T Y, et al. Coastal and inland water monitoring using a portable hyperspectral laser fluorometer[J]. Marine Pollution Bulletin, 2017, 119(1): 153-161.

    [41] [41] Chekalyuk A M, Hoge F E, Swift R N, et al. Laser fluorescence analysis of phytoplankton: beyond chlorophyll beyond chlorophyll concentration concentration[OL]. https://oceancolor.gsfc.nasa.gov/meetings/scienceteam/ocrt/apr2004/chekalyuk_ocrt04.pdf

    [42] [42] Babichenko S, Dudelzak A, Poryvkina L. Laser remote sensing of coastal and terrestrial pollution by FLS-LIDAR [J]. Earsel Proceedings, 2004, 3(1): 1-8.

    [43] [43] Hengsterman T, Reuter R. Lidar fluorosensing of mineral oil spill on the sea surface [J]. Applied Optics, 1990, 29(22): 3218-3227.

    [44] [44] Deirmendjian L, Lambert T, Morana C, et al. Dissolved organic matter composition and reactivity in Lake Victoria, the world′s largest tropical lake [J]. Biogeochemistry, 2020, 150: 61-83.

    [45] [45] Krumboltz H, Squire J L. Profiling pelagic fish schools using airborne optical lasers and other remote sensing techniques [J]. Marine Technology Society Journal, 1981, 15(4): 27-31.

    [46] [46] Murphree D L, Taylor C D, Mcclendoni R W. Mathematical modeling for the detection of fish by an airborne laser [J]. Aiaa Journal, 1974, 12(12): 1686-1692.

    [47] [47] Churnside J H, McGillivary P A. Optical properties of several Pacific fishes [J]. Applied Optics, 1991, 30(21): 2925-2927.

    [48] [48] Brown E D, Churnside J H, Collins R L, et al. Remote sensing of capelin and other biological features in the North Pacific using lidar and video technology [J]. Ices Journal of Marine Science, 2002, 59(5):1120-1130.

    [49] [49] Churnside J H, Hanan D A, Hanan Z D, et al. Lidar as a tool for fisheries management [C]//Proc of SPIE, 2011, 8159(5): 361-372.

    [50] [50] Churnside J H, Wells R D, Boswell K M, et al. Surveying the distribution and abundance of flying fishes and other epipelagics in the northern Gulf of Mexico using airborne lidar[J]. Bulletin of Marine Science, 2017, 93(2): 591-609.

    [54] [54] Lutomirski R F, Ciervo A P, Hall G J. Moments of multiple scattering [J]. Applied Optics, 1995, 34(30): 7125-7136.

    [55] [55] Kopilevich Y I, Surkov A G. Mathematical modeling of the input signals of oceanological lidars [J]. J Opt Technol, 2008, 75(5): 321-326.

    [56] [56] Dolin L S, Savelev V A. Characterization of back scattering signal at pulse radiation of turbid medium by a narrow directional light beam [J]. Atmos Ocea Phys, 1971, 7: 505-510.

    [57] [57] Wei W, Zhang X H, Rao J H, et al. Time domain dispersion of underwater optical wireless communication [J]. Chinese Optics Letters, 2011, 9(3): 101-104.

    [58] [58] Tang S J, Dong Y H, Zhang X D. Impulse response modeling for underwater wireless optical communication links [J].IEEE Transaction on Communication, 2014, 62(1): 226-234.

    [60] [60] Liu Q, Cui X Y, Chen W B, et al. A semianalytic Monte Carlo radiative transfer model for polarized oceanic lidar: experiment-based comparisons and multiple scattering effects analyses[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 237: 106638.

    Tools

    Get Citation

    Copy Citation Text

    Li Xiaolong, Zhao Chaofang. Application and development of Lidar to detect the vertical distribution of marine materials[J]. Infrared and Laser Engineering, 2020, 49(S2): 20200381

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: 激光器与激光光学

    Received: Sep. 22, 2020

    Accepted: Oct. 15, 2020

    Published Online: Feb. 5, 2021

    The Author Email: Xiaolong Li (lixiaolong@qdio.ac.cn)

    DOI:10.3788/irla20200381

    Topics