Journal of Synthetic Crystals, Volume. 52, Issue 8, 1441(2023)
Low-Frequency Sound Insulation Characteristics of Large-Size Asymmetric Membrane-Type Acoustic Metamaterials
[2] [2] BURRA S, KAR A. Nonlinear stereophonic acoustic echo cancellation using sub-filter based adaptive algorithm[J]. Digital Signal Processing, 2022, 121: 103323.
[3] [3] LIU Z, ZHANG X, MAO Y, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736.
[4] [4] OLSSON R H, EL-KADY I. Microfabricated phononic crystal devices and applications[J]. Measurement Science and Technology, 2009, 20(1): 012002.
[5] [5] ZHANG H, XIAO Y, WEN J H, et al. Ultra-thin smart acoustic metasurface for low-frequency sound insulation[J]. Applied Physics Letters, 2016, 108(14): 141902.
[6] [6] LU M H, FENG L, CHEN Y F. Phononic crystals and acoustic metamaterials[J]. Materials Today, 2009, 12(12): 34-42.
[7] [7] SUKHOVICH A, JING L, PAGE J H. Negative refraction and focusing of ultrasound in two-dimensional phononic crystals[J]. Physical Review B, 2008, 77: 014301.
[8] [8] YANG Z, DAI H M, CHAN N H, et al. Acoustic metamaterial panels for sound attenuation in the 50-1000 Hz regime[J]. Applied Physics Letters, 2010, 96(4): 041906.
[9] [9] CIABURRO G, IANNACE G. Membrane-type acoustic metamaterial using cork sheets and attached masses based on reused materials[J]. Applied Acoustics, 2022, 189: 108605.
[10] [10] MA F Y, WU JIU HUI, HUANG M. Resonant modal group theory of membrane-type acoustical metamaterials for low-frequency sound attenuation[J]. The European Physical Journal Applied Physics, 2015, 71(3): 30504.
[12] [12] ZHOU G J, WU J H, LU K, et al. Broadband low-frequency membrane-type acoustic metamaterials with multi-state anti-resonances[J]. Applied Acoustics, 2020, 159: 107078.
[13] [13] YANG Z, MEI J, YANG M, et al. Membrane-type acoustic metamaterial with negative dynamic mass[J]. Physical Review Letters, 2008, 101(20): 204301.
[14] [14] NAIFY C J, CHANG C M, MCKNIGHT G, et al. Scaling of membrane-type locally resonant acoustic metamaterial arrays[J]. The Journal of the Acoustical Society of America, 2012, 132(4): 2784-2792.
[15] [15] NAIFY C J, CHANG C M, MCKNIGHT G, et al. Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials[J]. Journal of Applied Physics, 2010, 108(11): 114905.
[16] [16] NAIFY C J, CHANG C M, MCKNIGHT G, et al. Transmission loss of membrane-type acoustic metamaterials with coaxial ring masses[J]. Journal of Applied Physics, 2011, 110(12): 124903.
[17] [17] NAIFY C J, CHANG C M, MCKNIGHT G, et al. Membrane-type metamaterials: transmission loss of multi-celled arrays[J]. Journal of Applied Physics, 2011, 109(10): 104902.
[18] [18] CAO D X, HU W H, GAO Y H, et al. Vibration and energy harvesting performance of a piezoelectric phononic crystal beam[J]. Smart Materials and Structures, 2019, 28(8): 085014.
[19] [19] CHENG Y, ZHOU C, YUAN B G, et al. Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances[J]. Nature Materials, 2015, 14(10): 1013-1019.
[20] [20] RAGUIN L, GAIFFE O, SALUT R, et al. Dipole states and coherent interaction in surface-acoustic-wave coupled phononic resonators[J]. Nature Communications, 2019, 10(1): 4583.
[21] [21] WU J H. Application of acoustic metamaterials in low-frequency vibration and noise reduction[J]. Journal of Mechanical Engineering, 2016, 52(13): 68.
[22] [22] DONG H W, SU X X, WANG Y S, et al. Topology optimization of two-dimensional asymmetrical phononic crystals[J]. Physics Letters A, 2014, 378(4): 434-441.
[24] [24] TAN Z H, SUN X W, TIAN M, et al. The mechanism of bandgap opening and merging in 2D spherical phononic crystals[J]. Physics Letters A, 2021, 405: 127432.
[26] [26] ZHANG D B, ZHAO J F, BONELLO B, et al. Air-coupled method to investigate the lowest-order antisymmetric Lamb mode in stubbed and air-drilled phononic plates[J]. AIP Advances, 2016, 6(8): 085021.
[27] [27] LANGFELDT F, GLEINE W. Optimizing the bandwidth of plate-type acoustic metamaterials[J]. The Journal of the Acoustical Society of America, 2020, 148(3): 1304.
[28] [28] EDWARDS W T, CHANG C M, MCKNIGHT G, et al. Transmission loss and dynamic response of hierarchical membrane-type acoustic metamaterials[J]. Journal of Vibration and Acoustics, 2020, 142(2): 021007.
[29] [29] FAHY F, GARDONIO P. Sound and structural vibration-radiation, transmission and response[J]. Noise Control Engineering Journal, 2007, 55(3): 373.
[30] [30] LANGFELDT F, GLEINE W. Membrane- and plate-type acoustic metamaterials with elastic unit cell edges[J]. Journal of Sound and Vibration, 2019, 453: 65-86.
[31] [31] FANO U. Effects of configuration interaction on intensities and phase shifts[J]. Physical Review B, 1961, 124(6): 1866-1878.
[32] [32] POTYOMINA L G. Double-humped phonon resonance in doubly resonant vibration systems: phonon metamaterials analogy with doubly resonant electromagnetic structures[J]. Physical Review B, 2020, 102(17): 174315.
[33] [33] HUANG T Y, SHEN C, JING Y. Membrane- and plate-type acoustic metamaterials[J]. The Journal of the Acoustical Society of America, 2016, 139(6): 3240-3250.
Get Citation
Copy Citation Text
YAN Wenhui, LIU Xixuan, FANG Tianyin, SUN Xiaowei, WEN Xiaodong, OUYANG Yuhua. Low-Frequency Sound Insulation Characteristics of Large-Size Asymmetric Membrane-Type Acoustic Metamaterials[J]. Journal of Synthetic Crystals, 2023, 52(8): 1441
Category:
Received: Feb. 6, 2023
Accepted: --
Published Online: Oct. 28, 2023
The Author Email: Wenhui YAN (yanwh_lzjtu@163.com)
CSTR:32186.14.