Chinese Optics Letters, Volume. 19, Issue 11, 110501(2021)

Real-time gradation-expressible amplitude-modulation-type electroholography based on binary-weighted computer-generated hologram

Ren Noguchi1, Kohei Suzuki1, Yoshiki Moriguchi1, Minoru Oikawa2, Yuichiro Mori2, Takashi Kakue3, Tomoyoshi Shimobaba3, Tomoyoshi Ito3, and Naoki Takada2、*
Author Affiliations
  • 1Graduate School of Integrated Arts and Sciences, Kochi University, Kochi 780-8520, Japan
  • 2Research and Education Faculty, Kochi University, Kochi 780-8520, Japan
  • 3Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
  • show less
    References(33)

    [1] S. A. Benton, J. V. M. Bove. Holographic Imaging(2008).

    [2] N. Hashimoto, S. Morokawa, K. Kitamura. Real-time holography using the high-resolution LCTV-SLM. Proc. SPIE, 1461, 291(1991).

    [3] K. Sato, K. Higuchi, H. Katsuma. Holographic television by liquid crystal devices. Proc. SPIE, 1667, 19(1992).

    [4] T. Sugie, T. Akamatsu, T. Nishitsuji, R. Hirayama, N. Masuda, H. Nakayama, Y. Ichihashi, A. Shiraki, M. Oikawa, N. Takada, Y. Endo, T. Kakue, T. Shimobaba, T. Ito. High-performance parallel computing for next generation holographic imaging. Nat. Electron., 1, 254(2018).

    [5] Y. Pan, X. Xu, S. Solanki, X. Liang, R. B. A. Tanjung, C. Tan, T.-C. Chong. Fast CGH computation using S-LUT on GPU. Opt. Express, 17, 18543(2009).

    [6] P. Tsang, W. K. Cheung, T.-C. Poon, C. Zhou. Holographic video at 40 frames per second for 4-million object points. Opt. Express, 19, 15205(2011).

    [7] F. Yaraş, H. Kang, L. Onural. Real-time phase-only color holographic video display system using LED illumination. Appl. Opt., 48, H48(2009).

    [8] T. Sugawara, Y. Ogihara, Y. Sakamoto. Fast point-based method of a computer-generated hologram for a triangle-patch model by using a graphics processing unit. Appl. Opt., 55, A160(2016).

    [9] M.-W. Kwon, S.-C. Kim, E.-S. Kim. GPU-based implementation of one-dimensional novel-look-up-table for real-time computation of Fresnel hologram patterns of three-dimensional objects. Opt. Eng., 53, 035103(2014).

    [10] Y. Sando, K. Satoh, D. Barada, T. Yatagai. Real-time interactive holographic 3D display with a 360° horizontal viewing zone. Appl. Opt., 58, G1(2019).

    [11] N. Takada, T. Shimobaba, H. Nakayama, A. Shiraki, N. Okada, M. Oikawa, N. Masuda, T. Ito. Fast high-resolution computer-generated hologram computation using multiple graphics processing unit cluster system. Appl. Opt., 51, 7303(2012).

    [12] Y. Pan, X. Xu, X. Liang. Fast distributed large-pixel-count hologram computation using a GPU cluster. Appl. Opt., 52, 6562(2013).

    [13] B. J. Jackin, H. Miyata, T. Ohkawa, K. Ootsu, T. Yokota, Y. Hayasaki, T. Yatagai, T. Baba. Distributed calculation method for large pixel-number holograms by decomposition of object and hologram planes. Opt. Lett., 39, 6867(2014).

    [14] B. J. Jackin, S. Watanabe, K. Ootsu, T. Ohkawa, T. Yokota, Y. Hayasaki, T. Yatagai, T. Baba. Decomposition method for fast computation of gigapixel-sized Fresnel holograms on a graphics processing unit cluster. Appl. Opt., 57, 3134(2018).

    [15] T. Baba, S. Watanabe, B. J. Jackin, K. Ootsu, T. Ohkawa, T. Yokota, Y. Hayasaki, T. Yatagai. Fast computation with efficient object data distribution for large-scale hologram generation on a multi-GPU cluster. IEICE Trans. Inf. Sys., E102-D, 1310(2019).

    [16] H. Niwase, N. Takada, H. Araki, Y. Maeda, M. Fujiwara, H. Nakayama, T. Kakue, T. Shimobaba, T. Ito. Real-time electroholography using a multiple-graphics processing unit cluster system with a single spatial light modulator and the InfiniBand network. Opt. Eng., 55, 093108(2016).

    [17] H. Sannomiya, N. Takada, T. Sakaguchi, H. Nakayama, M. Oikawa, Y. Mori, T. Kakue, T. Shimobaba, T. Ito. Real-time electroholography using a single spatial light modulator and a cluster of graphics-processing units connected by a gigabit Ethernet network. Chin. Opt. Lett., 18, 020902(2020).

    [18] H. Sannomiya, N. Takada, K. Suzuki, T. Sakaguchi, H. Nakayama, M. Oikawa, Y. Mori, T. Kakue, T. Shimobaba, T. Ito. Real-time spatiotemporal division multiplexing electroholography for 1,200,000 object points using multiple-graphics processing unit cluster. Chin. Opt. Lett., 18, 070901(2020).

    [19] M. L. Huebschman, B. Munjuluri, H. R. Garner. Dynamic holographic 3-D image projection. Opt. Express, 11, 437(2003).

    [20] M. Chlipala, T. Kozacki. Color LED DMD holographic display with high resolution across large depth. Opt. Lett., 44, 4255(2019).

    [21] J-P. Liu, M-H. Wu, P. W. M. Tsang. 3D display by binary computer generated holograms with localized random down-sampling and adaptive intensity accumulation. Opt. Express, 28, 24526(2020).

    [22] S. Jiao, D. Zhang, C. Zhang, Y. Gao, T. Lei, X. Yuan. Complex-amplitude holographic projection with a digital micromirror device (DMD) and error diffusion algorithm. IEEE J. Sel. Top. Quantum Electron., 26, 2800108(2020).

    [23] K. Min, J.-H. Park. Quality enhancement of binary-encoded amplitude holograms by using error diffusion. Opt. Express, 28, 38140(2020).

    [24] Y. Takaki, N. Okada. Hologram generation by horizontal scanning of a high-speed spatial light modulator. Appl. Opt., 48, 3255(2009).

    [25] Y. Takaki, N. Okada. Reduction of image blurring of horizontally scanning holographic display. Opt. Express, 18, 11327(2010).

    [26] Y. Takaki, K. Fujii. Viewing-zone scanning holographic display using a MEMS spatial light modulator. Opt. Express, 22, 24713(2014).

    [27] Y. Takekawa, Y. Takashima, Y. Takaki. Holographic display having a wide viewing zone using a MEMS SLM without pixel pitch reduction. Opt. Express, 28, 7392(2020).

    [28] Y. Takaki, M. Yokouchi. Speckle-free and grayscale hologram reconstruction using time-multiplexing technique. Opt. Express, 19, 7567(2011).

    [29] M.-C. Park, B.-R. Lee, J.-Y. Son, O. Chernyshov. “Properties of DMDs for holographic displays. J. Modern Opt., 62, 1600(2015).

    [30] M. Fujiwara, N. Takada, H. Araki, S. Ikawa, H. Niwase, Y. Maeda, H. Nakayama, T. Kakue, T. Shimobaba, T. Ito. Gradation representation method using binary-weighted computer-generated hologram. Opt. Eng., 56, 023105(2017).

    [31] M. Fujiwara, N. Takada, H. Araki, C. W. Ooi, S. Ikawa, Y. Maeda, H. Niwase, T. Kakue, T. Shimobaba, T. Ito. Gradation representation method using binary-weighted computer-generated hologram based on pulse width modulation. Chin. Opt. Lett., 15, 060901(2017).

    [32] M. Fujiwara, N. Takada, H. Araki, S. Ikawa, Y. Maeda, H. Niwase, M. Oikawa, T. Kakue, T. Shimobaba, T. Ito. Color representation method using RGB color binary-weighted computer-generated holograms. Chin. Opt. Lett., 16, 080901(2018).

    [33] D. Dudley, W. M. Duncan, J. Slaughter. Emerging digital micromirror device (DMD) applications. Proc. SPIE, 4985, 14(2003).

    Cited By
    Tools

    Get Citation

    Copy Citation Text

    Ren Noguchi, Kohei Suzuki, Yoshiki Moriguchi, Minoru Oikawa, Yuichiro Mori, Takashi Kakue, Tomoyoshi Shimobaba, Tomoyoshi Ito, Naoki Takada. Real-time gradation-expressible amplitude-modulation-type electroholography based on binary-weighted computer-generated hologram[J]. Chinese Optics Letters, 2021, 19(11): 110501

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Diffraction, Gratings, and Holography

    Received: May. 7, 2021

    Accepted: Sep. 14, 2021

    Posted: Sep. 15, 2021

    Published Online: Oct. 14, 2021

    The Author Email: Naoki Takada (ntakada@is.kochi-u.ac.jp)

    DOI:10.3788/COL202119.110501

    Topics