Journal of the Chinese Ceramic Society, Volume. 50, Issue 4, 1172(2022)
Research Progress on Nanocrystals Doped Glass Fiber
[1] [1] REIN M, FAVROD V D, HOU C, et al. Diode fibres for fabric-based optical communications[J]. Nature, 2018, 560(7717): 214-218.
[2] [2] GLADYSHEV A V, KOSOLAPOV A F, KOLYADIN A N, et al. Mid-IR hollow-core silica fibre Raman lasers[J]. Quantum Electron, 2017, 47(12): 1078.
[3] [3] ZHOU M, GUO J, YANG C. Ratiometric fluorescence sensor for Fe3+ ions detection based on quantum dot-doped hydrogel optical fiber[J]. Sensor Actuat B-Chem, 2018, 264: 52-58.
[4] [4] LIU Y, LIU X, WANG W, et al.Intense 2.7 μm mid-infrared emission of Er3+ in oxyfluoride glass ceramic containing NaYF4 nanocrystals[J]. Mater Res Bull, 2016, 76: 305-310.
[5] [5] FENG G, ZHOU S, BAO J, et al. Transparent Ni2+-doped lithium aluminosilicate glass-ceramics with broadband infrared luminescence [J]. J Alloys Compd, 2008, 457(1-2): 506-509.
[6] [6] IKESUE A, AUNG Y L. Synthesis of Yb: YAG ceramics without sintering additives and their performance[J]. J Am Ceram Soc, 2017, 100(1): 26-30.
[7] [7] SANINA V V, SUBBOTIN K A, LIS D A, et al. Spectroscopic Characteristics of Cr: Mg2SiO4 Laser Crystals Grown from Non- Stoichiometric Melts [C]//ICLO, St. Petersburg, Russia, 2018: 44-44.
[8] [8] BAE J, KIM H, ZHANG X M, et al. Si nanowire metal-insulator- semiconductor photodetectors as efficient light harvesters[J]. Nanotechnology, 2010, 21(9): 095502.
[9] [9] DAYEH S A, PICRAUX S. Direct observation of nanoscale size effects in Ge semiconductor nanowire growth[J]. Nano Lett, 2010, 10(10): 4032-4039.
[10] [10] ABRAMOV A N, BUBNOV M M, GURYANOV A, et al. Fabrication of active fluoroaluminosilicate fibers for high-power fiber lasers[J]. Inorg Mater, 2018, 54(3): 271-275.
[11] [11] JACKSON S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nat Photon, 2012, 6(7): 423-431.
[12] [12] TAN L, KANG S, PAN Z, et al. Topo-chemical tailoring of tellurium quantum dot precipitation from supercooled polyphosphates for broadband optical amplification[J]. Adv Opt Mater, 2016, 4(10): 1624-1634.
[13] [13] BALLATO J, PEACOCK A C. Perspective: Molten core optical fiber fabrication-a route to new materials and applications[J]. APL Photon, 2018, 3(12): 120903.
[14] [14] BENSAID N, BENBAHOUCHE S, ROUMILI F, et al. Influence of the normal load of scratching on cracking and mechanical strength of soda-lime-silica glass[J]. J Non-Cryst Solids, 2018, 483: 65-69.
[15] [15] LOU F, KUAN P-W, ZHANG L, et al. 2 μm laser properties of Tm3+-doped large core sol-gel silica fiber[J]. Opt Mater Express, 2014, 4: 1267-1275.
[16] [16] KANG S, SONG X, HUANG X, et al. Enhanced emission and spectroscopic properties in oxyfluoride glass ceramics containing LaOF: Er3+ nanocrystals[J]. Opt Mater Express, 2016, 6(7): 2351- 2359.
[17] [17] CHEN Z, WANG W, KANG S, et al. Tailorable upconversion white light emission from Pr3+ single-doped glass ceramics via simultaneous dual-lasers excitation[J]. Adv Opt Mater, 2018, 6(4): 1700787.
[18] [18] TICK P. Are low-loss glass-ceramic optical waveguides possible?[J]. Opt Lett, 1998, 23(24): 1904-1905.
[19] [19] Taylor G F. A method of drawing metallic filaments and a discussion of their properties and uses[J]. Phys Rev, 1924, 23: 655-660.
[20] [20] Snitzer E, Tumminelli R. SiO2-clad fibers with selectively volatilized soft-glass cores[J]. Opt Lett, 1989, 14: 757-759.
[21] [21] BALLATO J, SNITZER E. Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications[J]. Appl Opt, 1995, 34(30): 6848-6854.
[22] [22] CAVILLON M, FAUGAS B, ZHAO J, et al. Investigation of the structural environment and chemical bonding of fluorine in Yb-doped fluorosilicate glass optical fibres[J]. J Chem Thermodyn, 2019, 128: 119-126.
[23] [23] GORNI G, VELAZQUEZ J J, KOCHANOWICZ M, et al. Tunable upconversion emission in NaLuF4-glass-ceramic fibers doped with Er3+ and Yb3+ [J]. RSC Adv, 2019, 9(54): 31699-31707.
[24] [24] SAMSON B N, TICK P A, BORRELLI N F. Efficient neodymium- doped glass-ceramic fiber laser and amplifier[J]. Opt Lett, 2001, 26(3): 145-147.
[25] [25] CHEN J, SHI Z, ZHOU S, et al. Local chemistry engineering in doped photonic glass for optical pulse generation[J]. Adv Opt Mater, 2019, 76: 1801413.
[26] [26] FANG Z, ZHENG S, PENG W, et al. Fabrication and characterization of glass-ceramic fiber-containing Cr3+-doped ZnAl2O4 nanocrystals[J]. J Am Ceram Soc, 2015, 98(9): 2772-2775.
[27] [27] FANG Z, ZHENG S, PENG W, et al. Ni2+ doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment[J]. Opt Express, 2015, 23(22): 28258-28263.
[28] [28] PENG Z, HUANG X, MA Z, et al. Surface modification and fabrication of white-light-emitting Tm3+/CdS quantum dots co-doped glass fibers[J]. J Am Ceram Soc, 2019, 102(10): 5818-5827.
[29] [29] BHARDWAJ A, HREIBI A, LIU C, Heo, et al. PbS quantum dots doped glass fibers for optical applications[C]//Conference on Lasers and Electro-Optics, United States of America, 2012: CTh1G. 1.
[30] [30] KANG S, FANG Z, HUANG X, et al. Precisely controllable fabrication of Er3+-doped glass ceramic fibers: novel mid-infrared fiber laser materials[J]. J Mater Chem C, 2017, 5(18): 4549-4556.
[31] [31] PENG W, FANG Z, MA Z, et al. Enhanced upconversion emission in crystallization-controllable glass-ceramic fiber containing Yb3+-Er3+ codoped CaF2 nanocrystals[J]. Nanotechnology, 2016, 27(40): 405203.
[32] [32] HUANG X, FANG Z, PENG Z, et al. Formation, element-migration and broadband luminescence in quantum dot-doped glass fibers[J]. Opt Express, 2017, 25(17): 19691-19700.
[33] [33] OUYANG T, KANG S, ZHANG Z, et al. Microlaser output from rare-Earth ion-doped nanocrystal-in-glass microcavities[J]. Adv Opt Mater, 2019, 7: 1900197.
[34] [34] LIU X, ZHOU J, ZHOU S, et al. Transparent glass-ceramics functionalized by dispersed crystals[J]. Prog Mater Sci, 2018, 97: 38-96.
[35] [35] ZHANG Y, QIAN G, XIAO X, et al. The preparation of yttrium aluminosilicate (YAS) glass fiber with heavy doping of Tm3+ from polycrystalline YAG ceramics[J]. J Am Ceram Soc, 2018, 101(10): 4627-4633.
[36] [36] HUANG Y C, LU Y K, CHEN J C, et al. Broadband emission from Cr-doped fibers fabricated by drawing tower[J]. Opt Express, 2006, 14(19): 8492-8497.
[37] [37] BALLATO J, HAWKINS T, FOY P, et al. On the fabrication of all-glass optical fibers from crystals[J]. J Appl Phys, 2009, 105(5): 053110.
[38] [38] XIE Y Y, LIU Z J, CONG Z H, et al. All-fiber-integrated Yb: YAG-derived silica fiber laser generating 6 W output power[J]. Opt Express. , 2019, 27(3): 3791-3798.
[39] [39] ZHANG Y M, QIAN G Q, XIAO X S, et al. A yttrium aluminosilicate glass fiber with graded refractive index fabricated by melt-in-tube method[J]. J Am Ceram Soc, 2018, 101(4): 1616-1622.
[40] [40] MANGOGNIA A, KUCERA C, GUERRIER J, et al. Spinel-derived single mode optical fiber[J]. Opt Mater Express, 2013, 3(4): 511-518.
[41] [41] BALLATO J, MCMILLEN C, HAWKINS T, et al. Reactive molten core fabrication of glass-clad amorphous and crystalline oxide optical fibers[J]. Opt Mater Express, 2012, 2(2): 153-160.
[42] [42] FAUGAS B, HAWKINS T, KUCERA C, et al. Molten core fabrication of bismuth germanium oxide Bi4Ge3O12 crystalline core fibers[J]. J Am Ceram Soc, 2018, 101(9): 4340-4349.
[43] [43] DRAGIC P, KUCERA C, FURTICK J, et al. Brillouin spectroscopy of a novel baria-doped silica glass optical fiber[J]. Opt Express, 2013, 21(9): 10924-10941.
[44] [44] ELSMANN T, LORENZ A, YAZD N S, et al. High temperature sensing with fiber Bragg gratings in sapphire-derived all-glass optical fibers[J]. Opt Express, 2014, 22(22): 26825-26833.
[45] [45] LIU C N, HUANG Y C, HUANG P L, et al. Broadband Ce/Cr-doped crystal fibers for high axial resolution OCT light source[J]. Opt Express, 2015, 23(23): 29723-29728.
[46] [46] ZHANG Y M, SUN Y, WEN J X, et al. Investigation on the formation and regulation of yttrium aluminosilicate fiber driven by spontaneous element migration[J]. Ceram Int, 2019, 45(15): 19182-19188.
[47] [47] MORRIS S, HAWKINS T, FOY P, et al. Cladding glass development for semiconductor core optical fibers[J]. Int J Appl Glass Sci, 2012, 3(2): 144-153.
[48] [48] HEALY N, MAILIS S, BULGAKOVA N M, et al. Extreme electronic bandgap modification in laser-crystallized silicon optical fibres[J]. Nat Mater, 2014, 13(12): 1122-1127.
[49] [49] JI X Y, PAGE R L, CHAUDHURI S, et al. Single crystal germanium core optoelectronic fibers[J]. Adv Opt Mater, 2017, 5(1): 1600592.
[50] [50] BALLATO J, HAWKINS T, FOY P, et al. Silicon optical fiber[J]. Opt Express, 2008, 16(23): 18675-18683.
[51] [51] BALLATO J, HAWKINS T, FOY P, et al. Glass-clad single- crystal germanium optical fiber[J]. Opt Express, 2009, 17(10): 8029-8035.
[52] [52] SONG S, HEALY N, SVENDSEN S, et al. Crystalline GaSb-core optical fibers with room-temperature photoluminescence[J]. Opt Mater Express, 2018, 8(6): 1435-1440.
[53] [53] STRUTYNSKI C, DESEVEDAVY F, LEMIèRE A, et al. Tellurite- based core-clad dual-electrodes composite fibers[J]. Opt Mater Express, 2017, 7(5): 1503-1508.
[54] [54] TYAGI H K, LEE H W, UEBEL P, et al. Plasmon resonances on gold nanowires directly drawn in a step-index fiber[J]. Opt Lett, 2010, 35(15): 2573-2575.
[55] [55] TANG G W, QIAN Q, WEN X, et al. Phosphate glass-clad tellurium semiconductor core optical fibers[J]. J Alloys Compd, 2015, 633: 1-4.
[56] [56] COUCHERON D A, FOKINE M, PATIL N, et al. Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibres[J]. Nat Commun, 2016, 7(1): 1-9.
[57] [57] HEALY N, FOKINE M, FRANZ Y, et al. CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss[J]. Adv Opt Mater, 2016, 4(7): 1004-1008.
[58] [58] HOU C, JIA X T, WEI L, et al. Crystalline silicon core fibres from aluminium core preforms[J]. Nat Commun, 2015, 6(1): 1-6.
[59] [59] KANG S L, YU H, OUYANG T C, et al. Novel Er3+/Ho3+-codoped glass-ceramic fibers for broadband tunable mid-infrared fiber lasers[J]. J Am Ceram Soc, 2018, 10(19): 3956-3967.
[60] [60] KANG S L, HUANG Z P, LIN W, et al. Enhanced single-mode fiber laser emission by nano-crystallization of oxyfluoride glass-ceramic cores[J]. J Mater Chem C, 2019, 7(17): 5155-5162.
[61] [61] YU Y Z, FANG Z J, MA C S, et al. Mesoscale engineering of photonic glass for tunable luminescence[J]. NPG Asia Mater, 2016, 8(10): e318.
[62] [62] HUANG X J, FANG Z J, KANG S L, et al. Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission[J]. J Mater Chem C, 2017, 5(31): 7927-7934.
[63] [63] FANG Z J, XIAO X S, WANG X, et al. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers [J]. Sci Rep, 2017, 7(1): 1-8.
[64] [64] YU N, CAVILLON M, KUCERA C, et al. Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber[J]. Opt Lett, 2018, 43(13): 3096-3099.
[65] [65] DRAGIC P, RYAN C, KUCERA C, et al. Single-and few-moded lithium aluminosilicate optical fiber for athermal Brillouin strain sensing[J]. Opt Lett, 2015, 40(21): 5030-5033.
[66] [66] ZHENG S P, LI J, YU C L, et al. Preparation and characterizations of Nd: YAG ceramic derived silica fibers drawn by post-feeding molten core approach[J]. Opt Express, 2016, 24(21): 24248-24254.
[67] [67] TUGGLE M, KUCERA C, HAWKINS T, et al. Novel reactive molten core fabrication employing in-situ metal oxidation: Erbium-doped intrinsically low Brillouin scattering optical fiber[J]. Opt Mater X, 2019, 1: 100009.
[68] [68] LEE Y W, CHO C H, TSEN H W, et al. Tm3+-doped silicate fiber amplifier with gain per unit length of 3.17 dB/cm[C]//Advanced Solid State Lasers, Shanghai, China, 2014: AW3A.3.
[69] [69] LIU Z J, XIE Y Y, CONG Z H, et al. 110 mW single-frequency Yb: YAG crystal-derived silica fiber laser at 1064 nm[J]. Opt Lett, 2019, 44(17): 4307-4310.
[70] [70] HUANG Y P, WANG L A. In-line silicon Schottky photodetectors on silicon cored fibers working in 1550 nm wavelength regimes[J]. Appl Phys Lett, 2015, 106: 191106.
[71] [71] SUI K, FENG X, HOU Y, et al. Glass-clad semiconductor germanium fiber for high-speed photodetecting applications[J]. Opt Mater Express, 2017, 7(4): 1211-1219.
[72] [72] TANG G, LIU W, QIAN Q, et al. Antimony selenide core fibers[J]. J Alloys Compd, 2017, 694: 497-501.
[73] [73] TANG G, QIAN Q, WEN X, et al. Reactive molten core fabrication of glass-clad Se0.8Te0.2 semiconductor core optical fibers[J]. Opt Express, 2015, 23(18): 23624-23633.
[74] [74] LIU Y, SUN M, TANG G, et al. Multifunctional GeSe core fibers[J]. Mater Lett, 2019, 247: 193-196.
[75] [75] HUANG K, TANG G, LUO Q, et al. SeTe alloy semiconductor core optical fibers[J]. Mater Res Bull, 2018, 100: 382-385.
[76] [76] ZHANG T, LI K, ZHANG J, et al. High-performance, flexible, and ultralong crystalline thermoelectric fibers[J]. Nano Energy, 2017, 41: 35-42
Get Citation
Copy Citation Text
KANG Shiliang, FU Yanqing, LIN Changgui, DONG Guoping. Research Progress on Nanocrystals Doped Glass Fiber[J]. Journal of the Chinese Ceramic Society, 2022, 50(4): 1172
Category:
Received: Nov. 30, 2021
Accepted: --
Published Online: Nov. 13, 2022
The Author Email: Shiliang KANG (kangshiliang@nbu.edu.cn)