Journal of Radiation Research and Radiation Processing, Volume. 42, Issue 1, 010203(2024)

Electron beam radiation stability of metal-organic frameworks

Zepeng LIU, Yu MENG, Linfan LI, Jingye LI, Ziqiang WANG*, and Ming YU**
Author Affiliations
  • Shanghai Normal University, Shanghai 200234, China
  • show less
    References(35)

    [1] N Stock, S Biswas. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chemical Reviews, 112, 933-969(2012).

    [2] R Zhao, Y X Wu, Z B Liang et al. Metal–organic frameworks for solid-state electrolytes. Energy & Environmental Science, 13, 2386-2403(2020).

    [3] C P Raptopoulou. Metal-organic frameworks: synthetic methods and potential applications. Materials, 14, 310(2021).

    [4] D Banerjee, C M Simon, A M Plonka et al. Metal-organic framework with optimally selective xenon adsorption and separation. Nature Communications, 7, ncomms11831(2016).

    [5] J Y Pei, X W Gu, C C Liang et al. Robust and radiation-resistant hofmann-type metal-organic frameworks for record xenon/krypton separation. Journal of the American Chemical Society, 144, 3200-3209(2022).

    [6] H Xu, C S Cao, H S Hu et al. High uptake of ReO4– and CO2 conversion by a radiation-resistant thorium–nickle[Th48Ni6]nanocage-based metal–organic framework. Angewandte Chemie International Edition, 58, 6022-6027(2019).

    [7] Bin CHEN, Shan WU, Xiaojing SONG et al. Preliminary study on irradiation stability of metal-organic skeleton materials for the adsorption and separation of xenon and krypton. Nuclear Techniques, 45, 010302(2022).

    [8] J Li, H Wang, X Z Yuan et al. Metal-organic framework membranes for wastewater treatment and water regeneration. Coordination Chemistry Reviews, 404, 213116(2020).

    [9] X G Liu, Y Y Shan, S T Zhang et al. Application of metal organic framework in wastewater treatment. Green Energy & Environment, 8, 698-721(2023).

    [10] M Yu, Z Q Wang, H Z Liu et al. Laundering durability of photocatalyzed self-cleaning cotton fabric with TiO2 nanoparticles covalently immobilized. ACS Applied Materials & Interfaces, 5, 3697-3703(2013).

    [11] Xiaojun DING, Ming YU, Ziqiang WANG et al. “Green” dyeing of cotton fabric by radiation-initiated immobilizing nanoparticles. Journal of Radiation Research and Radiation Processing, 38, 011001(2020).

    [12] Fei HAN, Wenrui WANG, Danyi LI et al. Preparation and properties of Ag nanocluster composites by radiation method. Nuclear Techniques, 46, 050202(2023).

    [13] Z Niu, Z W Fan, T Pham et al. Self-adjusting metal–organic framework for efficient capture of trace xenon and krypton. Angewandte Chemie International Edition, 61, e20117807(2022).

    [14] Lihong LI. Study on adsorption of nuclides by organometallic framework complexes(2022).

    [15] M Yu, W X Li, Z Q Wang et al. Covalent immobilization of metal-organic frameworks onto the surface of nylon—a new approach to the functionalization and coloration of textiles. Scientific Reports, 6, 22796(2016).

    [16] S K Elsaidi, M H Mohamed, A S Helal et al. Radiation-resistant metal-organic framework enables efficient separation of krypton fission gas from spent nuclear fuel. Nature Communications, 11, 3103(2020).

    [17] A M Hastings, M Fairley, M C Wasson et al. Role of metal selection in the radiation stability of isostructural M-UiO-66 metal–organic frameworks. Chemistry of Materials, 34, 8403-8417(2022).

    [18] M L Ding, X C Cai, H L Jiang. Improving MOF stability: approaches and applications. Chemical Science, 10, 10209-10230(2019).

    [19] C Ma, H H Liu, H T Wolterbeek et al. Effects of high gamma doses on the structural stability of metal–organic frameworks. Langmuir, 38, 8928-8933(2022).

    [20] Y Z Jiang, C Y Liu, J Caro et al. A new UiO-66-NH2 based mixed-matrix membranes with high CO2/CH4 separation performance. Microporous and Mesoporous Materials, 274, 203-211(2019).

    [21] O M Yaghi, M J Kalmutzki, C S Diercks. Introduction to reticular chemistry, 57-81(2019).

    [22] B Deng, R Cai, Y Yu et al. Laundering durability of superhydrophobic cotton fabric. Advanced Materials, 22, 5473-5477(2010).

    [23] J X Wu, J Y Li, B Deng et al. Self-healing of the superhydrophobicity by ironing for the abrasion durable superhydrophobic cotton fabrics. Scientific Reports, 3, 2951(2013).

    [24] L Bromberg, Y Diao, H M Wu et al. Chromium(III) terephthalate metal organic framework (MIL-101): HF-free synthesis, structure, polyoxometalate composites, and catalytic properties. Chemistry of Materials, 24, 1664-1675(2012).

    [25] J Cravillon, R Nayuk, S Springer et al. Controlling zeolitic imidazolate framework nano- and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chemistry of Materials, 23, 2130-2141(2011).

    [26] J H Cavka, S Jakobsen, U Olsbye et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 130, 13850-13851(2008).

    [27] G Férey, C Mellot-Draznieks, C Serre et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 309, 2040-2042(2005).

    [28] M Y Zorainy, M G Alalm, S Kaliaguine et al. Revisiting the MIL-101 metal-organic framework: design, synthesis, modifications, advances, and recent applications. Journal of Materials Chemistry A, 9, 22159-22217(2021).

    [29] A Celeste, A Paolone, J P Itié et al. Mesoporous metal–organic framework MIL-101 at high pressure. Journal of the American Chemical Society, 142, 15012-15019(2020).

    [30] S Y Qiu, Y Wang, J Q Wan et al. Enhancing water stability of MIL-101(Cr) by doping Ni(II). Applied Surface Science, 525, 146511(2020).

    [31] A Dilmaghani, K Hosseini, V Tarhriz et al. Synthesis of Zeolitic imidazolate frameworks-8@ layered double hydroxide polyhedral nanocomposite with designed porous voids as an effective carrier for anti-cancer drug-controlled delivery. IET Nanobiotechnology, 17, 326-336(2023).

    [32] C S Wu, Z H Xiong, C Li et al. Zeolitic imidazolate metal organic framework ZIF-8 with ultra-high adsorption capacity bound tetracycline in aqueous solution. RSC Advances, 5, 82127-82137(2015).

    [33] M Bergaoui, M Khalfaoui, A Awadallah-F et al. A review of the features and applications of ZIF-8 and its derivatives for separating CO2 and isomers of C3- and C4- hydrocarbons. Journal of Natural Gas Science and Engineering, 96, 104289(2021).

    [34] C G Piscopo, A Polyzoidis, M Schwarzer et al. Stability of UiO-66 under acidic treatment: opportunities and limitations for post-synthetic modifications. Microporous and Mesoporous Materials, 208, 30-35(2015).

    [35] S J Garibay, S M Cohen. Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chemical Communications, 46, 7700-7702(2010).

    Tools

    Get Citation

    Copy Citation Text

    Zepeng LIU, Yu MENG, Linfan LI, Jingye LI, Ziqiang WANG, Ming YU. Electron beam radiation stability of metal-organic frameworks[J]. Journal of Radiation Research and Radiation Processing, 2024, 42(1): 010203

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Research Articles

    Received: Sep. 4, 2023

    Accepted: Oct. 9, 2023

    Published Online: Mar. 27, 2024

    The Author Email: WANG Ziqiang (王自强), YU Ming (虞鸣)

    DOI:10.11889/j.1000-3436.2023-0073

    Topics