Spectroscopy and Spectral Analysis, Volume. 40, Issue 2, 512(2020)
Classification of FTNIR Spectra of Tea via Possibilistic Fuzzy Discriminant C-Means Clustering
[1] [1] Zhuang X G, Wang L L, Chen Q, et al. Science China-Technological Sciences, 2017, 60(1): 84.
[2] [2] Ouyang Q, Liu Y, Chen Q, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 180: 91.
[3] [3] Wu X H, Zhu J, Wu B, et al. Computers and Electronics in Agriculture, 2018, 147: 64.
[4] [4] Yu X L, He Y. Spectroscopy Letters, 2018, 51(2): 112.
[5] [5] Bartoszek M, Polak J, Chorazewski M. European Food Research and Technology, 2018, 244(4): 595.
[6] [6] Meng W J, Xu X N, Cheng K K, et al. Food Analytical Methods, 2017, 10(11): 3508.
[7] [7] Wang S P, Gong Z M, Su X Z, et al. Journal of Applied Spectroscopy, 2017, 84(4): 704.
[8] [8] Hu L Q, Yin C L. Food Analytical Methods, 2017, 10(7): 2281.
[9] [9] Zhang T. International Journal of Pattern Recognition and Artificial Intelligence, 2018, 32(9): 1857005.
[10] [10] Kim E H, Oh S K, Pedrycz W. Neural Networks, 2018, 104: 1.
[11] [11] Ghosh P, Mali K, Das S K. Journal of Visual Communication and Image Representation, 2018, 54: 63.
[12] [12] Koutroumbas K D, Xenaki S D, Rontogiannis A A. IEEE Transaction on Fuzzy System, 2018, 26(1): 324.
[13] [13] Wu X H, Wu B, Sun J, et al. Journal of Food Process Engineering, 2017, 40(2): e12355.
[14] [14] Wu B, Wilamowski B M. IEEE Transactions on Industrial Informatics, 2017, 13(4): 1620.
[15] [15] Askari S, Montazerin N, Fazel Zarandi M H, et al. Neurocomputing, 2017, 219: 186.
[17] [17] Ma J, Pu H B, Sun D W. LWT—Food Science and Technology, 2018, 94: 119.
Get Citation
Copy Citation Text
WU Bin, FU Hai-jun, WU Xiao-hong, CHEN Yong, JIA Hong-wen. Classification of FTNIR Spectra of Tea via Possibilistic Fuzzy Discriminant C-Means Clustering[J]. Spectroscopy and Spectral Analysis, 2020, 40(2): 512
Received: Jan. 8, 2019
Accepted: --
Published Online: May. 12, 2020
The Author Email: