Chinese Journal of Quantum Electronics, Volume. 27, Issue 2, 187(2010)

Wigner functions for the eigenstates of k-th power annihilation operators and their non-classical properties

Hai-jiang LAN1,2、* and Lian-fu WEI2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(11)

    [1] [1] Kurtsiefer C, Pfau T, Mlynek J. Measurement of the Wigner function of an ensemble of helium atoms [J]. Nature, 1997, 386: 150-153.

    [2] [2] Luttervach L G, Davidovich L. Method for direct measurement of the Wigner function in cavity QED and ion traps [J]. Phys. Rev. Lett., 1997, 78(13): 2547-2550.

    [4] [4] Nogues G, Rauschenbeutel A, Osnaghi S, et al. Measurement of a negative value for the Wigner function of radiation [J]. Phys. Rev. A, 2000, 62(5): 054101.

    [5] [5] Lvovsky A I, Hansen H, Aichele T, et al. Quantum state reconstruction of the single-photon Fock state [J]. Phys. Rev. Lett., 2001, 87(5): 050402.

    [6] [6] Wei Lianfu, Wang Shunjin, Jie Quanlin. Excited states of coherent state and their nonclassical properties [J]. Chinese Science Bulletin, 1997, 42(20): 1686-1688.

    [11] [11] Clauher R J. The quantum theory of optical coherence [J]. Phys. Rev., 1963, 130(6): 2529-2539.

    [12] [12] Hillery M. Amplitude-squared squeezing of the electromagnetic field [J]. Phys. Rev. A, 1987, 36(8): 3796-3802.

    [15] [15] Sun Jinzuo, Wang Jisuo, Wang Chuankui. Orthonormalized eigenstates of cubic and highter powers of the annihilation operator [J]. Phys. Rev. A, 1991, 44(5): 3369-3372.

    [16] [16] Sun Jinzuo, Wang Jisuo, Wang Chuankui. Generation of orthonomalized eigenstates of the operator (for ) from coherent state and higher-order squeezing [J]. Phys. Rev. A, 1992, 46(3): 1700-1704.

    [18] [18] Parigi V, Zavatta A, Kim M S, et al. Probing quantum commutation rules by addition and subtraction of single photons to/from a light field [J]. Science, 2007, 317: 1890-1893.

    [19] [19] Ozdemir S K, Miranowicz A, Koashi M, et al. Quantum-scissors device for optical state truncation: a proposal for practical realization [J]. Phys. Rev. A, 2001, 64(6): 063818.

    Tools

    Get Citation

    Copy Citation Text

    LAN Hai-jiang, WEI Lian-fu. Wigner functions for the eigenstates of k-th power annihilation operators and their non-classical properties[J]. Chinese Journal of Quantum Electronics, 2010, 27(2): 187

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: May. 12, 2009

    Accepted: --

    Published Online: May. 31, 2010

    The Author Email: Hai-jiang LAN (lanhaijiang@163.com)

    DOI:

    CSTR:32186.14.

    Topics